Answer:
Option C.
2 Mg (s) + O₂(g) → 2MgO (s)
Explanation:
Two moles of magnesium solid react with one mol of oxygen gas to
form two moles of magnesium-oxide solid
2 Mg (s) + O₂(g) → 2MgO (s)
That's the reaction for the magnessium oxide's formation.
Be careful cause we do not say molecules, they are moles.
The stoichiometry indicates the number of moles that react and the moles which are produced.
It is a redox reaction, because the magnessium is oxidized and the oxygen is reduced. Both elements, changed the oxidation states.
Answer:
Middle: Self heating containers are really expensive but are useful because they are easy to use, portable, and can be recycled, unlike a camp stove which is not as easily moved.
Explanation:
i neeed a better image for the first an last boo<3
<span>Van der waal or ideal eqn is given by PV = NRT; P = NRT/ V.
Where N = 1.335 is the number of moles. T = 272K is temperature. V = 4.920L is the volume. And R = 0.08205L. Substiting the values into the eqn; we have,
P = (1.331* 0.08205 * 272)/ 4.920 = 29.7047/ 4.920 = 6.03atm.</span>
Answer:
Mass = 42.8g
Explanation:
4 NH 3 ( g ) + 5 O 2 ( g ) ⟶ 4 NO ( g ) + 6 H 2 O ( g )
Observe that every 4 mole of ammonia requires 5 moles of oxygen to obtain 4 moles of Nitrogen oxide and 6 moles of water.
Step 1: Determine the balanced chemical equation for the chemical reaction.
The balanced chemical equation is already given.
Step 2: Convert all given information into moles (through the use of molar mass as a conversion factor).
Ammonia = 63.4g × 1mol / 17.031 g = 3.7226mol
Oxygen = 63.4g × 1mol / 32g = 1.9813mol
Step 3: Calculate the mole ratio from the given information. Compare the calculated ratio to the actual ratio.
If all of the 1.9831 moles of oxygen were to be used up, there would need to be 1.9831 × 4 / 5 or 1.5865 moles of Ammonia. We have 3.72226 moles of ammonia - Far excess. Because there is an excess of Ammonia, the Oxygen amount is used to calculate the amount of the products in the reaction.
Step 4: Use the amount of limiting reactant to calculate the amount of H2O produced.
5 moles of O2 = 6 moles of H2O
1.9831 moles = x
x = (1.9831 * 6 ) / 5
x = 2.37972 moles
Mass of H2O = Molar mass * Molar mass
Mass = 2.7972 * 18
Mass = 42.8g
Answer:
Bubbling/Foaming
Heat is produced
Explanation:
A chemical reaction has occurred if
1. There is a change in colour
2. Formation of a precipitate
3. Formation of a gas
4. Change in temperature
5. Change of smell
In the reaction of hydrogen peroxide and potassium iodide, the solution quickly rises which shows the formation of gas. This means it is a chemical reaction.
The beaker/test tube/whatever you used should also become warm because it is an exothermic reaction. This means its a chemical reaction