Iron becomes rusted especially in damp air but never in a dry air, this is one of the many unique characteristics of iron. Iron is also ductile and malleable. It is found in the seventh group of the periodic table. It has four different and unique crystalline forms and completely dissolves in dilute acids. The two chemical compounds that can be found or made from iron are the bivalent iron also known as ferrous and the trivalent iron or known as ferric compounds.
1) You need to use the atomic mass of copper.
You can find it in a periodic table. It is 63.546 amu.
2) The atomic mass is the weigthed mass of the different isotopes.
This is, the atomic mass of one element is the atomic mass of each isotope times its corresponding abundance:
=> atomic mass of the element = abundance isotope 1 * atomic mass isotope 1 + abundance isotope 2 * atomic mass isotope 2 + ....+abundance isotope n * atomic mass isotope n.
3) The statement tells there are two isotopes so the abundance of one is x and the abundance of the other is 1 - x
=> 63.546 amu = x * 62.9296 amu + (1-x)*64.9278
=> 63.546 = 62.9296x + 64.9278 - 64.9278x
=> 64.9278x - 62.9296 = 64.9278 - 63.546
=> 1.9982x = 1.3818
=> x = 1.3818 / 1.9982 = 0.6915 = 69.15%
=> 1 - x = 1 - 0.6915 = 0.3085 = 30.85%
Answer:
Cu-63 69.15%;
Cu-65 : 30.85%
Answer : The correct expression for equilibrium constant will be:
![K_c=\frac{[C]^8}{[A]^4[B]^2}](https://tex.z-dn.net/?f=K_c%3D%5Cfrac%7B%5BC%5D%5E8%7D%7B%5BA%5D%5E4%5BB%5D%5E2%7D)
Explanation :
Equilibrium constant : It is defined as the equilibrium constant. It is defined as the ratio of concentration of products to the concentration of reactants.
The equilibrium expression for the reaction is determined by multiplying the concentrations of products and divided by the concentrations of the reactants and each concentration is raised to the power that is equal to the coefficient in the balanced reaction.
As we know that the concentrations of pure solids and liquids are constant that is they do not change. Thus, they are not included in the equilibrium expression.
The given equilibrium reaction is,

The expression of
will be,
![K_c=\frac{[C]^8}{[A]^4[B]^2}](https://tex.z-dn.net/?f=K_c%3D%5Cfrac%7B%5BC%5D%5E8%7D%7B%5BA%5D%5E4%5BB%5D%5E2%7D)
Therefore, the correct expression for equilibrium constant will be, ![K_c=\frac{[C]^8}{[A]^4[B]^2}](https://tex.z-dn.net/?f=K_c%3D%5Cfrac%7B%5BC%5D%5E8%7D%7B%5BA%5D%5E4%5BB%5D%5E2%7D)
Answer:
of carbon dioxide gas.
Explanation:
Average distance covered by Americans in a day= 
1 day = 24 × 60 min = 1,440 min
Average distance covered by Americans in a minute= 
Average mileage of the car = 20 miles/gal = 32.18 km/gal
1 mile = 1.609 km
20 miles = 20 × 1.609 km = 32.18 km
Volume of gasoline used in minute = 


(1 L = 1000 mL)

Mass of 86,320.00 gallons of gasoline = m
Density of the gasoline = d = 



1 kilogram of gasoline gives 3 kg of carbon dioxde gas .
Then 303,882.84649 kg of gasoline will give :
of carbon dioxide gas.