Answer:
1,780,000 N
Explanation:
0.2 atm × (1.013×10⁵ Pa/atm) = 20,260 Pa
Force = pressure × area
F = 20,260 Pa × (3.89 m × 22.6 m)
F = 1,780,000 N
The correct answer is:
<span>B.) At terminal velocity there is no net force
In fact, when the parachutist reaches the terminal velocity, his velocity does not change any more. It means that the acceleration acting on the parachutist is zero, and for Newton's second law, this means the net force acting on him is zero:
</span>

<span>because the acceleration is zero: a=0.
This also means that the two relevant forces acting on the parachutist (gravity, downward, and air resistance, upward) are balanced to produce a net force equal to zero.</span>
The total work done is 5980 Joules and the power expended is 57 Watts.
<h3>What is work done?</h3>
The work done is the work done in the gravitational field as the bucket is raised up Thus work required to remove the bucket Wb;
Wb = 13.9 kg * 25.9 m * 9.8 m/s^2 = 3530 Joules
Height of the center of mass of chain = 25.9 / 2 = 12.95 m
Work done by the chain Wc;
Wc = 12.95 * 19.3 * 9.8 = 2450 Joules
Total work = 3530 + 2450 = 5980 Joules
Power expended = W / t = 5980 J / 105 sec = 57 J/s = 57 Watts
Learn more about work done:brainly.com/question/13662169
#SPJ1
The position vector can be
transcribed as:
A<span> = 6 i + y j
</span>
i <span>points in the x-direction and j points
in the y-direction.</span>
The magnitude of the
vector is its dot product with itself:
<span>|A|2 = A·A</span>
<span>102 = (6 i +
y j)•(6 i+ y j)
Note that i•j = 0, and i•i = j•j =
1 </span>
<span>100 = 36 + y2
</span>
<span>64 = y2</span>
<span>get the square root of 64 = 8</span>
<span>The vertical component of the vector is 8 cm.</span>
Answer:
A. W = 6875.0 J.
B. W = -14264.6 J.
Explanation:
A. The work done by the rider can be calculated by using the following equation:

Where:
: is the force done by the rider = 25 N
d: is the distance = 275 m
θ: is the angle between the applied force and the distance
Since the applied force is in the same direction of the motion, the angle is zero.

Hence, the rider does a work of 6875.0 J on the bike.
B. The work done by the force of gravity on the bike is the following:
The force of gravity is given by the weight of the bike.
And the angle between the force of gravity and the direction of motion is 180°.
The minus sign is because the force of gravity is in the opposite direction to the motion direction.
Therefore, the magnitude of the work done by the force of gravity on the bike is 14264.6 J.
I hope it helps you!