In the first case, the force acting on the spring is the weight of the mass:

This force causes a stretching of

on the spring, so we can use these data to find the spring constant:

In the second case, the first mass is replaced with a second mass, whose weight is

And since we know the spring constant, we can calculate the new elongation of the spring:
Increasing the angle of inclination of the plane decreases the velocity of the block as it leaves the spring.
- The statement that indicates how the relationship between <em>v</em> and <em>x</em> changes is;<u> As </u><u><em>x</em></u><u> increases, </u><u><em>v</em></u><u> increases, but the relationship is no longer linear and the values of </u><u><em>v</em></u><u> will be less for the same value of </u><u><em>x</em></u><u>.</u>
Reasons:
The energy given to the block by the spring = 
According to the principle of conservation of energy, we have;
On a flat plane, energy given to the block =
= kinetic energy of
block = 
Therefore;
0.5·k·x² = 0.5·m·v²
Which gives;
x² ∝ v²
x ∝ v
On a plane inclined at an angle θ, we have;
The energy of the spring = 
- The force of the weight of the block on the string,

The energy given to the block =
= The kinetic energy of block as it leaves the spring = 
Which gives;

Which is of the form;
a·x² - b = c·v²
a·x² + c·v² = b
Where;
a, b, and <em>c</em> are constants
The graph of the equation a·x² + c·v² = b is an ellipse
Therefore;
- As <em>x</em> increases, <em>v</em> increases, however, the value of <em>v</em> obtained will be lesser than the same value of <em>x</em> as when the block is on a flat plane.
<em>Please find attached a drawing related to the question obtained from a similar question online</em>
<em>The possible question options are;</em>
- <em>As x increases, v increases, but the relationship is no longer linear and the values of v will be less for the same value of x</em>
- <em>The relationship is no longer linear and v will be more for the same value of x</em>
- <em>The relationship is still linear, with lesser value of v</em>
- <em>The relationship is still linear, with higher value of v</em>
- <em>The relationship is still linear, but vary inversely, such that as x increases, v decreases</em>
<em />
Learn more here:
brainly.com/question/9134528
Answer:

Explanation:
The textbooks say that the maximum range for projectile motion (with no air resistance) is 45 degrees.