Answer:
The work done on the suitcase is, W = 600 J
Explanation:
Given,
The average force exerted by Jose on his suitcase, F = 60 N
Jose carried the suitcase to a distance, S = 10 m
The work done on the suitcase is given by the relation
<em>W = F x S</em>
Substituting the given values in the above equation,
W = 60 N x 10 m
= 600 J
Hence, the work done on the suitcase is, W = 600 J
Answer:
C. 441 N
Explanation:
Gravitational force between two objects can by calculated by the formula
= G m₁m₂ / r² , m₁ and m₂ are masses at distance r
= ( 6.67 x 10⁻¹¹ x 45 x 5.98 x 10²⁴) / ( 6.38 x 10⁶ )²
= 44.09 x 10
= 440.9 N
= 441 N .
Use the law of universal gravitation, which says the force of gravitation between two bodies of mass <em>m</em>₁ and <em>m</em>₂ a distance <em>r</em> apart is
<em>F</em> = <em>G m</em>₁ <em>m</em>₂ / <em>r</em>²
where <em>G</em> = 6.67 x 10⁻¹¹ N m²/kg².
The Earth has a radius of about 6371 km = 6.371 x 10⁶ m (large enough for a pineapple on the surface of the earth to have an effective distance from the center of the Earth to be equal to this radius), and a mass of about 5.97 x 10²⁴ kg, so the force of gravitation between the pineapple and the Earth is
<em>F</em> = (6.67 x 10⁻¹¹ N m²/kg²) (1 kg) (5.97 x 10²⁴ kg) / (6.371 x 10⁶ m)²
<em>F</em> ≈ 9.81 N
Notice that this is roughly equal to the weight of the pineapple on Earth, (1 kg)<em>g</em>, where <em>g</em> = 9.80 m/s² is the magnitude of the acceleration due to gravity, so that [force of gravity] = [weight] on any given planet.
This means that on this new planet with twice the radius of Earth, the pineapple would have a weight of
<em>F</em> = <em>G m</em>₁ <em>m</em>₂ / (2<em>r</em>)² = 1/4 <em>G m</em>₁ <em>m</em>₂ / <em>r</em>²
i.e. 1/4 of the weight on Earth, which would be about 2.45 N.
Answer:
As wind or an ocean current moves, the Earth spins underneath it. ... The Coriolis effect bends the direction of surface currents to the right in the Northern Hemisphere and left in the Southern Hemisphere.
Explanation:
The Coriolis effect causes winds and currents to form circular patterns.
Answer:
The correct answer is 
Explanation:
The formula for the electron drift speed is given as follows,

where n is the number of of electrons per unit m³, q is the charge on an electron and A is the cross-sectional area of the copper wire and I is the current. We see that we already have A , q and I. The only thing left to calculate is the electron density n that is the number of electrons per unit volume.
Using the information provided in the question we can see that the number of moles of copper atoms in a cm³ of volume of the conductor is
. Converting this number to m³ using very elementary unit conversion we get
. If we multiply this number by the Avagardo number which is the number of atoms per mol of any gas , we get the number of atoms per m³ which in this case is equal to the number of electron per m³ because one electron per atom of copper contribute to the current. So we get,

if we convert the area from mm³ to m³ we get
.So now that we have n, we plug in all the values of A ,I ,q and n into the main equation to obtain,

which is our final answer.