Answer:
true its truedjjs sjsnsns
151.9j
Explanation:
PE=1/2kx^2
PE=1/2(980)(.50)= 245j
PE=(1/2)(980)(.81)= 396.9j
396.9- 245= 151.9j
The correct option is A. the isobaric process represented by the PV diagram
<h3>What is isobaric process?</h3>
- An Isobaric method is a thermodynamic revolution taking place at consistent pressure. The period isobaric has been derived from the Greek words “iso” and “baros” indicating equal intimidation.
- As such, the continued pressure is obtained when the importance is expanded or acquired. This basically neutralizes any pressure change due to the transfer of heat.
- In an isobaric procedure, when the heat is transferred to the system some work is done. Nevertheless, there is even a change in the internal energy of the system.
- This additionally means that no amounts as in the first law of thermodynamics evolve zero.
To learn more about isobaric process, refer to:
brainly.com/question/13040268
#SPJ9
Answer:
E = 1.19 N/C
Explanation:
Let's first determine the length of the arc which can be given as:
L= Rθ
where:
L = length of the arc
R = radius of curvature
θ = angle in radius
L = (9.09×10⁻²m)(2.59)
L = (0.0909)(2.59)
L = 0.235431 m
Then, the magnitude of electric field that Q produces at the center of curvature can be calculated by using the formula:
![E= \frac{\lambda}{4 \pi E_oR}[sin\frac{\theta}{2}-sin(-\frac{\theta}{2})]](https://tex.z-dn.net/?f=E%3D%20%5Cfrac%7B%5Clambda%7D%7B4%20%5Cpi%20E_oR%7D%5Bsin%5Cfrac%7B%5Ctheta%7D%7B2%7D-sin%28-%5Cfrac%7B%5Ctheta%7D%7B2%7D%29%5D)
![E= \frac{\lambda}{4 \pi E_oR}[sin\frac{\theta}{2}+sin(\frac{\theta}{2})]](https://tex.z-dn.net/?f=E%3D%20%5Cfrac%7B%5Clambda%7D%7B4%20%5Cpi%20E_oR%7D%5Bsin%5Cfrac%7B%5Ctheta%7D%7B2%7D%2Bsin%28%5Cfrac%7B%5Ctheta%7D%7B2%7D%29%5D)
![E= \frac{2\lambda}{4 \pi E_oR}[sin\frac{\theta}{2}]](https://tex.z-dn.net/?f=E%3D%20%5Cfrac%7B2%5Clambda%7D%7B4%20%5Cpi%20E_oR%7D%5Bsin%5Cfrac%7B%5Ctheta%7D%7B2%7D%5D)
Since 
where;
L = length
Q = charge
λ = density of the charge;
then substituting
for λ, we have :
![E= \frac{2(\frac{Q}{L})}{4 \pi E_oR}[sin\frac{\theta}{2}]](https://tex.z-dn.net/?f=E%3D%20%5Cfrac%7B2%28%5Cfrac%7BQ%7D%7BL%7D%29%7D%7B4%20%5Cpi%20E_oR%7D%5Bsin%5Cfrac%7B%5Ctheta%7D%7B2%7D%5D)
![E= \frac{2Q[sin\frac{\theta}{2}]}{4 \pi E_oLR}](https://tex.z-dn.net/?f=E%3D%20%5Cfrac%7B2Q%5Bsin%5Cfrac%7B%5Ctheta%7D%7B2%7D%5D%7D%7B4%20%5Cpi%20E_oLR%7D)
substituting our given parameter; we have:
![E= \frac{2(6.26*10^{-12}C)[sin\frac{2.59rad}{2}]}{4 \pi (8.85*10^{-12}C^2/N.m^2)(0.235431)(0.0909)}](https://tex.z-dn.net/?f=E%3D%20%5Cfrac%7B2%286.26%2A10%5E%7B-12%7DC%29%5Bsin%5Cfrac%7B2.59rad%7D%7B2%7D%5D%7D%7B4%20%5Cpi%20%288.85%2A10%5E%7B-12%7DC%5E2%2FN.m%5E2%29%280.235431%29%280.0909%29%7D)
E = 1.1889 N/C
E = 1.19 N/C
∴ the magnitude of the electric field that Q produces at the center of curvature = 1.19 N/C
E = (1/2)CV²
1 = (1/2)*(2*10⁻⁶)V²
10⁶ = V²
1000 = V
You should charge it to 1000 volts to store 1.0 J of energy.