Answer:


Explanation:
Here mass density of rod is varying so we have to use the concept of integration to find mass and location of center of mass.
At any distance x from point A mass density


Lets take element mass at distance x
dm =λ dx
mass moment of inertia

So total moment of inertia

By putting the values

By integrating above we can find that

Now to find location of center mass


Now by integrating the above


So mass moment of inertia
and location of center of mass 
The cost of developing thermonuclear power with plasmabe defended because D. It can provide an inexpensive power source.
<h3>How did the
cost of developing t
hermonuclear power defended?</h3>
The cost of developing thermonuclear power defended becvause we can see in the paragraph how it was told that the generation of ths power can be donee through the understanding of the occurrence of plasmain nature,
It should be noted that this thermonuclear power with plasmabe posses the characteristics which make it to exist in the ionosphere, and it can be felt in the flames as well; as in the chemical and nuclearexplosions.
In conclusion the power can be seen as an inexpensive source power because the p[roduction of this power cn be found in most of the thing that can be found around us as discused above.
Therefore, option D is correct.
Read more about cost at:
brainly.com/question/25109150
#SPJ1
The term counter-insurgency refers to the actions (political and military) that aims in targeting the activities the revolutionaries. This operation consists of three stages. The stage that focuses on the expansion of stability operations onto the opposed regions by utilizing host nation forces belongs to the middle stage. Answer is C.
Answer:
Emec = 94050 [J]
Explanation:
In order to solve this problem, we must understand that all thermal energy is converted into mechanical energy.
The thermal energy can be calculated by means of the following expression.

where:
Q = heat [J]
Cp = specific heat of water = 4186 [J/kg*°C]
m = mass = 300 [g] = 0.3 [kg]
T_final = 95 [°C]
T_initial = 20 [°C]
Now we can calculate the heat, replacing the given values:
![Q=0.3*4180*(95-20)\\Q= 94050[J]](https://tex.z-dn.net/?f=Q%3D0.3%2A4180%2A%2895-20%29%5C%5CQ%3D%2094050%5BJ%5D)
Since all this energy must come from the mechanical energy delivered by the exercise bike, and no energy is lost during the process, the mechanical energy must be equal to the thermal energy.
![Q=E_{mec}\\E_{mec}=94050[J]](https://tex.z-dn.net/?f=Q%3DE_%7Bmec%7D%5C%5CE_%7Bmec%7D%3D94050%5BJ%5D)
Answer:
Force = -91.7 Newton
Explanation:
Given the following data;
Mass = 47 kg
Time = 4.1 seconds
Initial velocity = 8 m/s
Since the object comes to a stop, its final velocity would be equal to zero.
To find the force required to bring it to stop;
First of all, we would determine the acceleration of the object;
Mathematically, acceleration is given by the equation;

Substituting into the equation;
Acceleration, a = -1.95 m/s²
Next, we would determine the force required to bring the object to stop;
Force = -91.65 ≈ 91.7 Newton