1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Delicious77 [7]
3 years ago
5

Please help!!!!!

Physics
2 answers:
adoni [48]3 years ago
8 0
Gpe is basses on the force equation...
GPE=m*g*h=1.5kg*9.8m/s^2*8m=117.6 N*m
Gemiola [76]3 years ago
5 0
Hawk's gravitational potential energy = mass of hawk x acceleration due to gravity x height of hawk above the ground = 1.5x9.8x8 = 117.6 joules/J. 
You might be interested in
You have a grindstone (a disk) that is 95.2 kg, has a 0.399 m radius, and is turning at 93 rpm, and you press a steel axe agains
olya-2409 [2.1K]

Answer:

angular acceleration is -0.2063  rad/s²

Explanation:

Given data

mass m = 95.2 kg

radius r = 0.399 m

turning ω = 93 rpm

radial force N  = 19.6 N

kinetic coefficient of friction  μ = 0.2

to find out

angular acceleration

solution

we know frictional force that is = radial force × kinetic coefficient of friction

frictional force = 19.6 × 0.2

frictional force = 3.92 N

and

we know moment of inertia  that is

γ =  I ×α = frictional force × r

so

γ  = 1/2 mr²α

α  = -2f /mr

α  = -2(3.92) /95.2 (0.399)

α  = - 7.84 / 37.9848 = -0.2063

so angular acceleration is -0.2063  rad/s²

3 0
3 years ago
The diagram below shows different weights on the see-saw. Will the see-saw move?
oee [108]

Answer:

yes it will

Explanation:

8 0
2 years ago
2) Two ice skaters have masses m1 and m2 and are initially stationary. Their skates are identical. They push against one another
worty [1.4K]

Answer:

m_1 / m_2 = sqrt (1 / 2)

Explanation:

Given:

- Initial velocity of both skaters V_i = 0

- Velocity of skater 1 after push = V_1

- Velocity of skater  after push = V_2

- Distance traveled by skater 1 = s_1

- Distance traveled by skater 2 = s_2

- s_1 = 2*s_2

- Accelerations of both skaters to halt is equal

Find:

What is the ratio m1/m2 of their masses

Solution:

- Apply conservation of momentum for two skaters just before and after the push as follows:

                                              P_i = P_f

                                  0 = m_1*V_1 - m_2*V_2

- Evaluate:                 m_1 / m_2 = ( V_2 / V_1 )

- Apply Conservation of Energy on both skaters as follows:

- Skater 1:

                               0.5*m_1*V_1^2 = u_k*m_1*g*s_1

-Simplify:                      0.5*V_1^2 = u_k*g*(2*s_2)

- Skater 2:

                               0.5*m_2*V_2^2 = u_k*m_2*g*s_2

-Simplify:                      0.5*V_2^2 = u_k*g*s_2

- Divide the two energy equations for skaters:

                                    (V_1 / V_2)^2 = 2

                                    (V_2 / V_1)^2 = 1 / 2

- simplify:                     (V_2 / V_1) = sqrt (1 / 2)

-Hence from earlier momentum conservation results:

                                  m_1 / m_2 = ( V_2 / V_1 ) = sqrt (1 / 2)

6 0
3 years ago
A physics book slides off a horizontal tabletop with a speed of 1.10 m/s. It strikes the floor in 0.350s. ignore air resistance.
Nookie1986 [14]

Answer:

a. 0.6 m b. 0.385 m c. 3.6 m/s at 287.78° to the horizontal

Explanation:

a. Using s = ut - 1/2gt² for motion under gravity where s = vertical distance = height of table, u = initial vertical velocity of book = 0 m/s, t = time of flight = 0.350 s and g = acceleration due to gravity = 9.8 m/s².

Substituting these these values into s and taking the top of the table as position 0 m, we have.

0 - s = 0t - 1/2gt²

-s = -1/2gt²

s = 1/2gt²

s = 1/2 × 9.8 m/s² × (0.350 s)²

s = 0.6 m

b. Using d = v't where d = horizontal distance from table, v' = horizontal velocity of book = 1.10 m/s and t = time of flight = 0.350 s

d = v't = 1.10 m/s × 0.350 s = 0.385 m

c. Using v² = u² - 2gs where u = initial vertical velocity of book = 0 m/s and g = 9.8 m/s², s = -0.6 m (negative since we are at the bottom and 0 m is at the top)and v = final vertical velocity of book

v² = u² - 2gs

= 0 - 2 × 9.8 m/s² × (-0.6 m)

= 11.76 m²/s²

v = √11.76 m/s

= 3.43 m/s

So, the magnitude of the resultant velocity is V = √(v² + v'²)

= √((3.43 m/s)² + (1.10 m/s)'²)

= √(11.76 m²/s² + 1.21 m²/s²)

= √12.97 m²/s²

= 3.6 m/s

Its direction Ф = tan⁻¹(-v/v') since v is in the negative y direction

= tan⁻¹(-3.43 m/s/1.10 m/s)

= tan⁻¹(-3.1182)

= -72.22°

Ф = -72.22°+ 360 = 287.78° since it is in the third quadrant

7 0
3 years ago
A 650 kg steel beam is being pulled up by a crane with a force of 7020 N. What is the upwards acceleration of the beam?
zimovet [89]

Answer: 1 m/s^2

Explanation:

n= w+ma

n= Mg+Ma

7020 = (650)(9.8)+650a

7020 = 6370+ 650a

650=650a

A= 1 m/s^2

8 0
3 years ago
Other questions:
  • ow long must a simple pendulum be if it is to make exactly ten swings per second? (That is, one complete vibration takes exactly
    6·1 answer
  • Why does the sky change colors at sunset?
    9·2 answers
  • The compound LiBr is an example of
    12·1 answer
  • Randy observed that cooked onions in his food taste very differently from the raw onions that he had on his salad. He wondered w
    13·2 answers
  • A plane flying horizontally above earth’s surface at 100. meters per second drops a crate. the crate strikes the ground 30.0 sec
    9·1 answer
  • Which of the following is NOT usually published with a scientific report?
    11·1 answer
  • Plz help!!!!!!!!
    12·1 answer
  • How would the Earth move if the sun (including its gravity) suddenly disappeared? Explain your answer.
    5·1 answer
  • Earth's inner core is:a dense ball of solid metal
    7·1 answer
  • How do intensity, frequency, and time affect physical fitness?
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!