They are said to be directly related.
a) directly related.
This is Charles' Law.
The velocity of the tip of the second hand is 0.0158 m/s
Explanation:
First of all, we need to calculate the angular velocity of the second hand.
We know that the second hand completes one full circle in
T = 60 seconds
Therefore, its angular velocity is:

Now we can calculate the velocity of a point on the tip of the hand by using the formula

where
is the angular velocity
r = 15 cm = 0.15 m is the radius of the circle (the distance of the point from the centre of rotation)
Substituting,

Learn more about angular motion here:
brainly.com/question/9575487
brainly.com/question/9329700
brainly.com/question/2506028
#LearnwithBrainly
Answer:
non linear square relationship
Explanation:
formula for centripetal force is given as
a = mv^2/r
here a ic centripetal acceleration , m is mass of body moving in circle of radius r and v is velocity of body . If m ,and r are constant we have
a = constant × v^2
a α v^2
hence non linear square relationship
Density = (mass) / (volume)
4,000 kg/m³ = (mass) / (0.09 m³)
Multiply each side
by 0.09 m³ : (4,000 kg/m³) x (0.09 m³) = mass
mass = 360 kg .
Force of gravity = (mass) x (acceleration of gravity)
= (360 kg) x (9.8 m/s²)
= (360 x 9.8) kg-m/s²
= 3,528 newtons .
That's the force of gravity on this block, and it doesn't matter
what else is around it. It could be in a box on the shelf or at
the bottom of a swimming pool . . . it's weight is 3,528 newtons
(about 793.7 pounds).
Now, it won't seem that heavy when it's in the water, because
there's another force acting on it in the upward direction, against
gravity. That's the buoyant force due to the displaced water.
The block is displacing 0.09 m³ of water. Water has 1,000 kg of
mass in a m³, so the block displaces 90 kg of water. The weight
of that water is (90) x (9.8) = 882 newtons (about 198.4 pounds),
and that force tries to hold the block up, against gravity.
So while it's in the water, the block seems to weigh
(3,528 - 882) = 2,646 newtons (about 595.2 pounds) .
But again ... it's not correct to call that the "force of gravity acting
on the block in water". The force of gravity doesn't change, but
there's another force, working against gravity, in the water.
Ideally the resistance should be ZERO