Answer:
U2 = 47.38m/s = initial velocity of B before impact
Explanation:
An example of the diagram is shown in the attached file because of missing angle of direction in the question
Mass A, B are mass of cars
A = 1965
B =1245
U1 = initial velocity of A = 52km/hr
U2 = initial velocity of B
V = common final velocity of two cars
BU2 = (A + B)*V sin ¤ ...eq1 y plane
AU1 = (A + B) *V cos ¤ ....equ 2plane
From equ 2
V = AU1/(A + B)*cos ¤
Substitute V into equation 1
We have
U2 = (AU1/B)tan ¤ where ¤ = angle of direction which is taken to be 30°
Substitute all parameters to get
U2 = (1965/1245)*52 * tan 30°
U2 = 47.38m/s
Answer:
h = 9.57 seconds
Explanation:
It is given that,
Initial speed of Kalea, u = 13.7 m/s
At maximum height, v = 0
Let t is the time taken by the ball to reach its maximum point. It cane be calculated as :




t = 1.39 s
Let h is the height reached by the ball above its release point. It can be calculated using second equation of motion as :

Here, a = -g


h = 9.57 meters
So, the height attained by the ball above its release point is 9.57 meters. Hence, this is the required solution.
Traveling against currents usually takes longer. Kinda like walking against the wind, you feel the heaviness against your jacket as you push through it. Where when you walking with the wind, it kind of gives your a push. Same for with currents.
Answer:
4.7 N
Explanation:
130 g = 0.13 kg
The momentum of the snowball when it's thrown at the wall is

Which is also the impulse. From here we can calculate the magnitude of the average force F knowing the duration of the collision is 0.18 s



Answer:
Gas is a state of matter that has no fixed shape and no fixed volume.
In addition to solids and liquids, gases are also a physical state in which matter can occur. All gases have weight. Unlike solids and liquids, gases will occupy the entire container that encloses them.
matter is "anything that has mass and volume (occupies space)
<em>Gases have mass. The space between gas particles is empty. Gases can be formed as products in chemical reactions. Gas particles can form bonds between them under certain conditions</em>
<em> Gases have volume which isn't fixed </em>(no fixed volume)<em> and no fixed shape. Gases expand to fill the space available. They can also be compressed into a very small space.</em>
Explanation: