Answer:


Explanation:
Recall the formula for linear momentum (p):
which in our case equals 26.4 kg m/s
and notice that the kinetic energy can be written in terms of the linear momentum (p) as shown below:

Then, we can solve for the mass (m) given the information we have on the kinetic energy and momentum of the particle:

Now by knowing the particle's mass, we use the momentum formula to find its speed:

Answer:
Children achieve development milestones at the same time regardless of culture
Explanation:
AnswDIVID THEN SEMPFL THEN GRT 80.8
Explanation:
Answer:
B is the answer
Explanation:
When A is divided by 7x, it multiplies to0.81
Answer:
0.37 kg
Explanation:
I'm not a professor myself, but this is how I worked it out:
using the graph, after 100 seconds, the temperature is 100 degrees Celsius.
If we now substitute everything into the specific heat capacity equation, making the mass "m", we would come up with:
4200 = 155000/(m x 100)
If we rearrange and solve for m, we get 0.37 kg.
I'm not sure if I have done this correctly, feel free to correct me.
Hope this helps!