Answer:
The ball would have landed 3.31m farther if the downward angle were 6.0° instead.
Explanation:
In order to solve this problem we must first start by doing a drawing that will represent the situation. (See picture attached).
We can see in the picture that the least the angle the farther the ball will go. So we need to find the A and B position to determine how farther the second shot would go. Let's start with point A.
So, first we need to determine the components of the velocity of the ball, like this:






we pick the positive one, so it takes 0.317s for the ball to hit on point A.
so now we can find the distance from the net to point A with this time. We can find it like this:



Once we found the distance between the net and point A, we can similarly find the distance between the net and point B:







t= -0.9159s or t=0.468s
we pick the positive one, so it takes 0.468s for the ball to hit on point B.
so now we can find the distance from the net to point B with this time. We can find it like this:



So once we got the two distances we can now find the difference between them:

so the ball would have landed 3.31m farther if the downward angle were 6.0° instead.
Answer:
because energy will be lost due to friction, sound, and heat (arguably similar to friction) and ENERGY MUST STAY THE SAME so it is IMPOSSIBLE for the ball to bounce higher than when dropped!
Temperature is the energy
Answer:
The number of turns of wire needed is 573.8 turns
Explanation:
Given;
maximum emf of the generator, = 190 V
angular speed of the generator, ω = 3800 rev/min =
area of the coil, A = 0.016 m²
magnetic field, B = 0.052 T
The number of turns of the generator is calculated as;
emf = NABω
where;
N is the number of turns


Therefore, the number of turns of wire needed is 573.8 turns
Answer:
q₃=5.3nC
Explanation:
First, we have to calculate the force exerted by the charges q₁ and q₂. To do this, we use the Coulomb's Law:

Since we know the net force, we can use this to calculate q₃. As q₁ is at the right side of q₃ and q₁ and q₃ have opposite signs, the force F₁₃ points to the right. In a similar way, as q₂ is at the left side of q₃, and q₂ and q₃ have equal signs, the force F₂₃ points to the right. That means that the resultant net force is the sum of these two forces:

In words, the value of q₃ must be 5.3nC.