Sure !
Start with Newton's second law of motion:
Net Force = (mass) x (acceleration) .
This formula is so useful, and so easy, that you really
should memorize it.
Now, watch:
The mass of the box is 5.25 kilograms, and the box is
accelerating at the rate of 2.5 m/s² .
What's the net force on the box ?
Net Force = (mass) x (acceleration)
= (5.25 kilograms) x (2.5 m/s²)
Net force = 13.125 newtons .
But hold up, hee haw, whoa ! Wait a second !
Bella is pushing with a force of 15.75 newtons, but the box
is accelerating as if the force on it is only 13.125 newtons.
What happened to the rest of Bella's force ? ?
==> Friction is pushing the box in the opposite direction,
and cancelling some of Bella's force.
How much ?
(Bella's 15.75 newtons) minus (13.125 that the box feels)
= 2.625 newtons backwards, applied by friction.
Answer:
The balloon would still move like a rocket
Explanation:
The principle of work of this system is the Newton's third law of motion, which states that:
"When an object A exerts a force on an object B (action), object B exerts an equal and opposite force (reaction) on object A"
In this problem, we can identify the balloon as object A and the air inside the balloon as object B. As the air goes out from the balloon, the balloon exerts a force (backward) on the air, and as a result of Newton's 3rd law, the air exerts an equal and opposite force (forward) on the balloon, making it moving forward.
This mechanism is not affected by the presence or absence of surrounding air: in fact, this mechanism also works in free space, where there is no air (and in fact, rockets also moves in space using this system, despite the absence of air).
No spacecraft has been built yet that was able to absorb harmful
radiations in space, change weather conditions on Earth, or destroy
meteors and comets which might strike Earth.
We should continue to send robotic spacecrafts into space
because they help discard some myths about objects in space.
In other words, they help us learn things that we never knew before.
The coefficient of static friction between the puck and the surface.
In fact, that coefficient describes exactly how "hard" it is to cause the puck to start moving, if it starts from an idle condition.