Thank you for your question, what you say is true, the gravitational force exerted by the Earth on the Moon has to be equal to the centripetal force.
An interesting application of this principle is that it allows you to determine a relation between the period of an orbit and its size. Let us assume for simplicity the Moon's orbit as circular (it is not, but this is a good approximation for our purposes).
The gravitational acceleration that the Moon experience due to the gravitational attraction from the Earth is given by:
ag=G(MEarth+MMoon)/r2
Where G is the gravitational constant, M stands for mass, and r is the radius of the orbit. The centripetal acceleration is given by:
acentr=(4 pi2 r)/T2
Where T is the period. Since the two accelerations have to be equal, we obtain:
(4 pi2 r) /T2=G(MEarth+MMoon)/r2
Which implies:
r3/T2=G(MEarth+MMoon)/4 pi2=const.
This is the so-called third Kepler law, that states that the cube of the radius of the orbit is proportional to the square of the period.
This has interesting applications. In the Solar System, for example, if you know the period and the radius of one planet orbit, by knowing another planet's period you can determine its orbit radius. I hope that this answers your question.
Imagine you are in a swimming pool 30m deep. Assuming you know that water is denser than air, you would know that the 30m of water above you will carry more weight, and press down on your body. Say you were in a swimming pool 60m deep, you would be sandwiched between 30m of water pressing down on you, and the upthrust created by the 30m of water below you.
In a building 30m up, the pressure will be regulated, as you are in a building. The floor will be strong enough to support the weight of the body, and the body will not recoil into itself.
Answer:
I don't think the information is complete
-- There is no need to develop the pictures. They are available immediately in a digital camera.
-- There is no change in the teacher from one picture to the next.
-- The distance the watermelon falls from the teacher in each new picture is more in each picture than in the picture before it. (C)