Answer:
t = 1.77 s
Explanation:
The equation of a traveling wave is
y = A sin [2π (x /λ -t /T)]
where A is the oscillation amplitude, λ the wavelength and T the period
the speed of the wave is constant and is given by
v = λ f
Where the frequency and period are related
f = 1 / T
we substitute
v = λ / T
let's develop the initial equation
y = A sin [(2π / λ) x - (2π / T) t +Ф]
where Ф is a phase constant given by the initial conditions
the equation given in the problem is
y = 5.26 sin (1.65 x - 4.64 t + 1.33)
if we compare the terms of the two equations
2π /λ = 1.65
λ = 2π / 1.65
λ = 3.81 m
2π / T = 4.64
T = 2π / 4.64
T = 1.35 s
we seek the speed of the wave
v = 3.81 / 1.35
v = 2.82 m / s
Since this speed is constant, we use the uniformly moving ratios
v = d / t
t = d / v
t = 5 / 2.82
t = 1.77 s
Answer:
14 m/s
Explanation:
u = 0, h = 10 m, g = 9.8 m/s^2
Use third equation of motion
v^2 = u^2 + 2 g h
Here, v be the velocity of ball as it just strikes with the ground
v^2 = 0 + 2 x 9.8 x 10
v^2 = 196
v = 14 m/s
Answer:
Explanation:
The equivalent resistance for three resistors connected in parallel is given as
(1/R)=(1/R₁)+(1/R₂)+(1/R₃)
now we.need to.insert the value of 3 resistances but only 2 are given in the question.
Answer: See below
Explanation:
The Earth attracts the falling object with the same intensity of gravity as the object attracts the Earth, according to Newton's law of gravitation. The displacement of the two bodies, however, is inversely proportional to their respective masses.
Example: The Earth attracts a ball that falls 3 metres from the ground, even though the ball's mass is insignificant in comparison to the Earth's. Similarly, the ball draws the Earth with the same power, but the Earth's mass is enormously more than the ball's. As a result, the Earth collides with a billionth of a millimetre ball (or even less). Restart the Earth's descent on the ball you'll never see again.
|-----------|
| ANSWERED |
| BY |
| SHORTHAX |
|-----------|
(\__/) ||
(•ㅅ•) ||
/ づ