1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
DiKsa [7]
3 years ago
15

Which phrase describes how Jupiter and Saturn are similar?

Physics
2 answers:
Readme [11.4K]3 years ago
5 0

Answer:

Many Moons

Explanation:

DedPeter [7]3 years ago
4 0
The phase many moons .
You might be interested in
A 100 kg roller coaster comes over the first hill at 2 m/sec (vo). The height of the first hill (h) is 20 meters. See roller dia
aleksandr82 [10.1K]

For the 100 kg roller coaster that comes over the first hill of height 20 meters at 2 m/s, we have:

1) The total energy for the roller coaster at the <u>initial point</u> is 19820 J

2) The potential energy at <u>point A</u> is 19620 J

3) The kinetic energy at <u>point B</u> is 10010 J

4) The potential energy at <u>point C</u> is zero

5) The kinetic energy at <u>point C</u> is 19820 J

6) The velocity of the roller coaster at <u>point C</u> is 19.91 m/s

1) The total energy for the roller coaster at the <u>initial point</u> can be found as follows:

E_{t} = KE_{i} + PE_{i}

Where:

KE: is the kinetic energy = (1/2)mv₀²

m: is the mass of the roller coaster = 100 kg

v₀: is the initial velocity = 2 m/s

PE: is the potential energy = mgh

g: is the acceleration due to gravity = 9.81 m/s²

h: is the height = 20 m

The<em> total energy</em> is:

E_{t} = KE_{i} + PE_{i} = \frac{1}{2}mv_{0}^{2} + mgh = \frac{1}{2}*100 kg*(2 m/s)^{2} + 100 kg*9.81 m/s^{2}*20 m = 19820 J

Hence, the total energy for the roller coaster at the <u>initial point</u> is 19820 J.

   

2) The <em>potential energy</em> at point A is:

PE_{A} = mgh_{A} = 100 kg*9.81 m/s^{2}*20 m = 19620 J

Then, the potential energy at <u>point A</u> is 19620 J.

3) The <em>kinetic energy</em> at point B is the following:

KE_{A} + PE_{A} = KE_{B} + PE_{B}

KE_{B} = KE_{A} + PE_{A} - PE_{B}

Since

KE_{A} + PE_{A} = KE_{i} + PE_{i}

we have:

KE_{B} = KE_{i} + PE_{i} - PE_{B} =  19820 J - mgh_{B} = 19820 J - 100kg*9.81m/s^{2}*10 m = 10010 J

Hence, the kinetic energy at <u>point B</u> is 10010 J.

4) The <em>potential energy</em> at <u>point C</u> is zero because h = 0 meters.

PE_{C} = mgh = 100 kg*9.81 m/s^{2}*0 m = 0 J

5) The <em>kinetic energy</em> of the roller coaster at point C is:

KE_{i} + PE_{i} = KE_{C} + PE_{C}            

KE_{C} = KE_{i} + PE_{i} = 19820 J      

Therefore, the kinetic energy at <u>point C</u> is 19820 J.

6) The <em>velocity</em> of the roller coaster at point C is given by:

KE_{C} = \frac{1}{2}mv_{C}^{2}

v_{C} = \sqrt{\frac{2KE_{C}}{m}} = \sqrt{\frac{2*19820 J}{100 kg}} = 19.91 m/s

Hence, the velocity of the roller coaster at <u>point C</u> is 19.91 m/s.

Read more here:

brainly.com/question/21288807?referrer=searchResults

I hope it helps you!

3 0
3 years ago
Light propagating in the glass n1= 1.65 wall of an aquarium tank strikes the interior edge of the wall with incidence angle 19.0
jonny [76]
We can solve this using Snell's Law which is represented by the equation:
sin θ₁ / sin θ₂ = n₂ / n₁

From the problem, we can substitute values and solve for the angle of refraction.
sin 19 / sin θ₂ = 1.65 / 1
θ₂ = 11.38°

The angle of refraction would be 11.38°.
3 0
2 years ago
A weightlifter lifts a set of weights a vertical distance of 2.00m.If a constant net force of 350 N is exerted on the weights,wh
MrMuchimi

Answer:

<em>W=700 Joule</em>

Explanation:

<u>Physics Work </u>

Is the dot product of the force vector by the displacement vector

W=\vec F \cdot \vec r

When both the force and the displacements are pointed in the same direction, the formula reduces to its scalar version

W=F.d

The weightlifter is applying a net force of 350 N to lift the weights a distance of 2 m, thus the net work done is

W=350\ N\ .\ 2\ m=700\ Joule

4 0
3 years ago
Carbon is allowed to diffuse through a steel plate 9.7-mm thick. The concentrations of carbon at the two faces are 0.664 and 0.3
cupoosta [38]

Answer:

844°C

Explanation:

The problem can be easily solve by using Fick's law and the Diffusivity or diffusion coefficient.

We know that Fick's law is given by,

J = - D \frac{\Delta c}{\Delta x}

Where \frac{\Delta c}{\Delta x} is the concentration of gradient

D is the diffusivity coefficient

and J is the flux of atoms.

In the other hand we have, that

D= D_0 e^{\frac{E_d}{RT}}

Where D_0 is the proportionality constant,

R is the gas constant, T the temperature and E_d is the activation energy.

Replacing the value of diffusivity coefficient in Fick's law we have,

J = -D_0 ^{\frac{E_d}{RT}}\frac{\Delta c}{\Delta x}

Rearrange the equation to get the value of temperature,

T=\frac{Ed}{Rln(\frac{J\Delta x}{D_0 \Delta c})}

We have all the values in our equation.

\Delta c = 0.664-0.339 = 0.325 C. cm^{-1}

\Delta x = 9.7*10^{-3}m

E_d = 82000J

D_0 = 6.5*10^{-7}m^2/s

J = 3.2*10^{-9}m^2/s

R= 8.31Jmol^{-1}K

Substituting,

T=\frac{Ed}{Rln(\frac{J\Delta x}{D_0 \Delta c})}

T=-\frac{-82000}{(8.31)ln(\frac{3.2*10^{-9}(9.7*10^{-3})}{6.5*10^{-7} (0.325)})}

T=1118.07K=844\°C

4 0
3 years ago
Suppose that you are standing on a train accelerating at 0.20g. What minimum coefficient of static friction must exist between y
Ilia_Sergeevich [38]
Acceleration = (0.2 x g) = 1.96m/sec^2. 
<span>Accelerating force on 1kg. = (ma) = 1.96N. </span>
<span>1kg. has a weight (normal force) of 9.8N. </span>
<span>Coefficient µ = 1.96/9.8 = 0.2 minimum. </span>

<span>Coefficient is a ratio, so holds true for any value of mass to find accelerating force acting. </span>
<span>e.g. 75kg = (75 x g) = 735N. </span>
<span>Accelerating force = (735 x 0.2) = 147N</span>
5 0
3 years ago
Read 2 more answers
Other questions:
  • Modern wind turbines generate electricity from wind power. The large, massive blades have a large moment of inertia and carry a
    9·1 answer
  • My question is An object may be acted on by several forces. What name is given to the single force that has the same effect as t
    12·2 answers
  • The electric force between two charged balloons is 0.12 newtons. If the distance between the two balloons is halved, what will b
    9·2 answers
  • Identical forces act for the same length of time on two different masses. The change in momentum of the smaller mass is
    14·1 answer
  • 1)A sequência de uma entrevista depende da intenção pretendida do entrevistador e do meio de comunicação que será publicado. Nor
    5·1 answer
  • Moving current has electrical energy.
    6·1 answer
  • A thunderclap sends a sound wave through the air and the ocean below. The
    12·1 answer
  • Hi please zoom in to see it clearly, uh you don’t have to answer them all but it would be nice !!! (no links please) :D
    10·1 answer
  • If two cells out of n number of cells each of internal resistance ’r’ are wrongly connected in series, then total resistance of
    14·2 answers
  • A merry go round has rotational inertia (moment of inertia) of 73.0 kg/m^2 and is rotating at a constant speed of 30.0 rads./sec
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!