Answer:
The right answer is "1.369 m/s²".
Explanation:
The given values are:
Distance (s)
= 260 m
Initial speed (u)
= 26 m/s
Reaction time (t')
= 0.51 s
During reaction time, the distance travelled by locomotive will be:
⇒ 


Remained distance between locomotive and car:
⇒ 


Now,
The final velocity to avoid collection is, V = 0 m/s
From third equation of motion:
⇒ 
On putting the estimated values, we get
⇒ 
⇒ 
⇒ 
⇒ 
⇒ 
Answer:
a = 0.009 J
b = 0.19 m/s
c = 0.005 J and 0.004 J
Explanation:
Given that
Mass of the object, m = 0.5 kg
Spring constant of the spring, k = 20 N/m
Amplitude of the motion, A = 3 cm = 0.03 m
Displacement of the system, x = 2 cm = 0.02 m
a
Total energy of the system, E =
E = 1/2 * k * A²
E = 1/2 * 20 * 0.03²
E = 10 * 0.0009
E = 0.009 J
b
E = 1/2 * k * A² = 1/2 * m * v(max)²
1/2 * m * v(max)² = 0.009
1/2 * 0.5 * v(max)² = 0.009
v(max)² = 0.009 * 2/0.5
v(max)² = 0.018 / 0.5
v(max)² = 0.036
v(max) = √0.036
v(max) = 0.19 m/s
c
V = ±√[(k/m) * (A² - x²)]
V = ±√[(20/0.5) * (0.03² - 0.02²)]
V = ±√(40 * 0.0005)
V = ±√0.02
V = ±0.141 m/s
Kinetic Energy, K = 1/2 * m * v²
K = 1/2 * 0.5 * 0.141²
K = 1/4 * 0.02
K = 0.005 J
Potential Energy, P = 1/2 * k * x²
P = 1/2 * 20 * 0.02²
P = 10 * 0.0004
P = 0.004 J
Answer:
Simple awnser Do it yourself I really would help but I have no clue! Sorry
Explanation:
Answer: be a better person
Explanation:
Answer:
The total momentum of the system before the collision is 0.0325 kg-m/s due east direction.
Explanation:
Given that,
Mass of the cart, m = 250 g = 0.25 kg
Initial velocity of the cart, u = 0.31 m/s (due right)
Mass of another cart, m' = 500 g = 0.5 kg
Initial velocity of the another cart u' = -0.22 m/s (due left)
Let p is the total momentum of the system before the collision. It is given by :

So, the total momentum of the system before the collision is 0.0325 kg-m/s due east direction.