Answer:
304.89m
Explanation:
Given
acceleration a = 2.52m/s²
final speed v = 39.2m/s
initial speed = 0m/s (car accelerates from rest)
Using the equation of motion below to get the distance of Doc brown from Marty;
v² = u²+2as
substitute the given parameters
39.2² = 0²+2(2.52)s
1536.64 = 0+5.04s
divide both sides by 5.04
1536.64/5.04 = 5.04s/5.04
rearrange the equation
5.04s/5.04 = 1536.64/5.04
s = 304.89m
Hence He and Marty must stand at 304.89m to allow the car to accelerate from rest to a speed of 39.2 m/s?
When the pendulum and roller coaster move to the top, its has more potential energy whereas when comes to the bottom has more kinetic energy.
<h3>Compare and contrast the energy transfer of a roller coaster to that of a pendulum:</h3><h3>What is the transfer of energy in a roller coaster?</h3>
The transfer of potential energy to kinetic energy occur when the roller coaster move along the track. As the motor pulls the cars to the top, the body has more potential energy whereas when the body comes to the bottom , it has kinetic energy in the object.
<h3>What is the energy transfer in a pendulum?</h3>
As a pendulum swings, its potential energy changes to kinetic energy and kinetic energy changes into potential energy. At the top more potential energy is present.
So we can conclude that When the pendulum and roller coaster move to the top, its has more potential energy whereas when comes to the bottom has more kinetic energy.
Learn more about energy here: brainly.com/question/13881533
#SPJ1
Answer:
0.53 N, 25.6°
Explanation:
side of triangle, a = 1.2 m
q = 7 μC
q1 = - 8 μC
q2 = - 6 μC
Let F1 be the force between q and q1
By using the coulomb's law


F1 = 0.35 N
Let F2 be the force between q and q2
By using the coulomb's law


F2 = 0.26 N
Write the forces in the vector form



Net force


Magnitude of the force

F = 0.53 N
Direction of force with x axis

θ = 25.6°
11 m/s simply divide the momentum with the mass
Power = (voltage) x (current)
Divide each side by 'voltage': Current = power / voltage
= (60 watts) / (120 volts) = 0.5 ampere