Given Information:
Wavelength = λ = 39.1 cm = 0.391 m
speed of sound = v = 344 m/s
linear density = μ = 0.660 g/m = 0.00066 kg/m
tension = T = 160 N
Required Information:
Length of the vibrating string = L = ?
Answer:
Length of the vibrating string = 0.28 m
Explanation:
The frequency of beautiful note is
f = v/λ
f = 344/0.391
f = 879.79 Hz
As we know, the speed of the wave is
v = √T/μ
v = √160/0.00066
v = 492.36 m/s
The wavelength of the string is
λ = v/f
λ = 492.36/879.79
λ = 0.5596 m
and finally the length of the vibrating string is
λ = 2L
L = λ/2
L = 0.5596/2
L = 0.28 m
Therefore, the vibrating section of the violin string is 0.28 m long.
The formula for the rotational kinetic energy is

where I is the moment of inertia. This is just mass times the square of the perpendicular distance to the axis of rotation. In other words, the radius of the propeller or this is equivalent to the length of the rod. ω is the angular velocity. We determine I and ω first.

ω = 573 rev/min * (2π rad/rev) * (1 min/60 s) = 60 rad/s
Then,

Answer:
The force applied on one wheel during braking = 6.8 lb
Explanation:
Area of the piston (A) = 0.4 
Force applied on the piston(F) = 6.4 lb
Pressure on the piston (P) = 
⇒ P = 
⇒ P = 16 
This is the pressure inside the cylinder.
Let force applied on the brake pad = 
Area of the brake pad (
)= 1.7 
Thus the pressure on the brake pad (
) = 
When brake is applied on the vehicle the pressure on the piston is equal to pressure on the brake pad.
⇒ P = 
⇒ 16 = 
⇒
= 16 × 
Put the value of
we get
⇒
= 16 × 1.7
⇒
= 27.2 lb
This the total force applied during braking.
The force applied on one wheel =
=
= 6.8 lb
⇒ The force applied on one wheel during braking.
Answer:
it is an 3d array of structure which involves inopperation methods
Explanation:
loollll