Volume= Length X width X height.
Plug in the values for each and solve for the volume.
V= (L)(W)(H)
V=(4cm)(5cm)(10cm).
Answer:
time rising = 34 / 9.8 = 3.47 sec
total time in air = 2 * 3.47 sec = 6.94 sec
(time rising must equal time falling)
R = 17 m/s * 6.94 s = 118 m
Can also use range formula
R = v^2 sin (2 theta) / g
tan theta = 34 / 17 = 2
theta = 63.4 deg
2 theta = 126.9 deg
sin 126.9 = .8
v^2 = 17^2 + 34^2 = 1445 m^2/s^2
R = 1445 * .8 / 9.8 = 118 m agreeing with answer found above
The electric field produced by a large flat plate with uniform charge density on its surface can be found by using Gauss law, and it is equal to

where

is the charge density

is the vacuum permittivity
We see that the intensity of the electric field does not depend on the distance from the plate. Therefore, the strenght of the electric field at 4 cm from the plate is equal to the strength of the electric field at 2 cm from the plate:
Geostrophic winds blows parallel to the isobars. That is because the Coriolis force and pressure gradient force ( PGF ) are in balance. But near the surface the friction can act to change the direction of the wind and to slow it down. Coriolis force decreases at the surface and PGF stays the same. The difference in terrain conditions affects how much friction is exerted. Hills and forests force the wind to change direction more than flat areas. Answer: Friction reduces the speed so Coriolis is weakened.