The empirical formula is K₂O.
The empirical formula is the <em>simplest whole-number ratio</em> of atoms in a compound.
The <em>ratio of atom</em>s is the same as the <em>ratio of moles</em>.
So, our job is to calculate the <em>molar ratio</em> of K to O.
Step 1. Calculate the <em>moles of each element
</em>
Moles of K = 32.1 g K × (1 mol K/(39.10 g K =) = 0.8210 mol K
Moles of O = 6.57 g O × (1 mol O/16.00 g O) = 0.4106 mol 0
Step 2. Calculate the <em>molar ratio of each elemen</em>t
Divide each number by the smallest number of moles and round off to an integer
K:O = 0.8210:0.4106 = 1.999:1 ≈ 2:1
Step 3: Write the <em>empirical formula
</em>
EF = K₂O
Nucleus ,endoplasmic reticulum
Answer:
The parts of an atom are<em><u> protons, electrons, and neutrons.</u></em>
A proton is positively charged and is located in the center or nucleus of the atom.
Electrons are negatively charged and are located in rings or orbits spinning around the nucleus.
The number of protons and electrons is always equal.
Answer: c. Matter and energy are conserved in chemical reactions.
Explanation:
According to the law of conservation of matter, mass can neither be created nor be destroyed. Thus the mass of products has to be equal to the mass of reactants. The number of atoms of each element has to be same on reactant and product side.
For every chemical reaction, the law of conservation of energy is applicable which states that the energy of the system remains conserved. Energy can neither be created nor destroyed. It can be transformed from one form to another.
160.0g
Mass =volume x density = 200.0 mL x 0.8 g/mL= 160.0 g