Answer:
Explanation:
3
Explanation:
The reaction expression is given as:
Al(OH)₃ + HNO₃ → H₂O + Al(NO₃)₃
To solve this problem, let us assign coefficient a,b,c and d to each specie;
aAl(OH)₃ + bHNO₃ → cH₂O + dAl(NO₃)₃
Conserving Al : a = d
O: 3a + 3b = c + 9d
H: 3a + b = 2c
N: b = 3d
let a = 1 , d = 1, b = 3 , c = 3
Multiply through by 3;
a = 1, b = 3, c = 3 and d = 1
Al(OH)₃ + 3HNO₃ → 3H₂O + Al(NO₃)₃
The concentration is 5 g/L.
Concentration = mass/volume = 10 g/2 L = 5 g/L
Answer:asexual- Energy is not required to find a mate. Offspring are genetic clones. A negative mutation can make asexually produced organisms susceptible to disease and can destroy large numbers of offspring. Some methods of asexual reproduction produce offspring that are close together and compete for food and space.
Explanation:During sexual reproduction the genetic material of two individuals is combined to produce genetically diverse offspring that differ from their parents.
Answer:
Option B. A tractor–trailer traveling at 80 kph.
Explanation:
Kinetic energy can be defined as the energy possessed by a body in motion. Mathematically, it is expressed as:
K.E = ½mv²
Where:
K.E is the kinetic energy.
m is the mass of the object.
v is the velocity of the object.
From the equation, K.E = ½mv²,
We can say that the kinetic energy (K.E), is directly proportional to both the mass (m) and square of the velocity (v). This implies that the greater the mass of an object, the greater the kinetic energy and the smaller the mass, the smaller the kinetic energy.
Now, considering the options given in question above, it is evident that the tractor–trailer has a greater mass than the car, cheetah and motor cycle. Hence, the tractor–trailer will have a greater kinetic energy even though they are traveling with the same velocity.