The change in the internal energy of the ideal gas is determined as -28 J.
<h3>
Work done on the gas</h3>
The work done on the ideal gas is calculated as follows;
w = -PΔV
w = -1.5 x 10⁵(0.0006 - 0.0002)
w = -60 J
<h3>Change in the internal energy of the gas</h3>
ΔU = w + q
ΔU = -60J + 32 J
ΔU = -28 J
Thus, the change in the internal energy of the ideal gas is determined as -28 J.
Learn more about internal energy here: brainly.com/question/23876012
#SPJ1
LIQUID is that state............
From the curve on the graph we can see, when y=50 x=4.5
the unit of x-axis is in "billions of years", so the answer is 4.5 billions of years
<span>3933 watts
At 100 C (boiling point of water), it's density is 0.9584 g/cm^3. The volume of water lost is pi * 12.5^2 * 10 = 4908.738521 cm^3
The mass of water boiled off is 4908.738521 * 0.9584 = 4704.534999 grams.
Rounding to 4 significant figures gives me 4705 grams of water.
The heat of vaporization for water is 2257 J/g. So the total energy applied is
2257 J/g * 4705 g = 10619185 J
Now we need to divide that by how many seconds we've spent boiling water. That would be 45 * 60 = 2700 seconds.
Finally, the rate of heat transfer in Joules per second will be the total number of joules divided by the total number of seconds. So
10619185 J / 2700 s = 3933 J/s = 3933 (kg m^2/s^2)/s = 3933 (kg m^2/s^3)
= 3933 watts</span>
Answer:
Hello friend where is the figure of the question