1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
kvasek [131]
3 years ago
14

There are two blocks: one large one initially at rest, and a smaller one, initially moving to the right withsome speed. The smal

l block is 25 kg, and the large block is 50 kg. The blocks are to the left of a hill.The hill is 10 meters tall. (Drawing not to scale)a) The small block collides with the large block and sticks together. How fast must the initial velocityof the small block be so that the two blocks just reach the top of the hill. (Assume no friction).b) What was the total impulse the small block exerted on the large block in order to get it going fastenough
Physics
1 answer:
KATRIN_1 [288]3 years ago
6 0

Answer:

Explanation:

Let the initial velocity of small block be v .

by applying conservation of momentum we can find velocity of common mass

25 v = 75 V , V is velocity of common mass after collision.

V = v / 3

For reaching the height we shall apply conservation of mechanical energy

1/2 m v² = mgh

1/2  x 75 x V² = 75 x g x 10

V² = 2g x 10

v² / 9 = 2 x 9.8 x 10

v² = 9 x 2 x 9.8 x 10

v = 42 m /s

small block must have velocity of 42 m /s .

Impulse by small block on large block

= change in momentum of large block

= 75 x V

= 75  x 42 / 3

= 1050 Ns.

You might be interested in
1)the magnetic field is strongest near_________of a bar magnet.
horrorfan [7]
1. Is A. at the poles because thats where the magnetic field is going out then coming back into the earth to produce the magnetic field.
2. Again its A. because the compass needle is attracted to " north " which is magnetic south. It does this because opposites attract.
3. This one would be B. Because if the magnets were being repelled the magnetic field lines would look like there was a line that the field hit and bounced off of it.
4. This answer is A. the magnetite helps them migrate so they know which way is north and which way is south.
5. This answer is A. Because without the domains there wouldn't be poles on the magnetic object. <span />
7 0
3 years ago
Read 2 more answers
What are the products of linear electron flow during the light reactions of photosynthesis?
Katena32 [7]

Answer:

NADPH and ATP

Explanation:

In the clear stage the light that "hits" chlorophyll excites an electron to a higher energy level. In a series of reactions, energy is converted (throughout an electron transport process) into ATP and NADPH. Water breaks down in the process releasing oxygen as a secondary product of the reaction. ATP and NADPH are used to make the C-C bonds in the dark stage.

Photophosphorylation is the process of converting the energy of the electron excited by light into a pyrophosphate bond of an ADP molecule. This occurs when water electrons are excited by light in the presence of P680. The energy transfer is similar to the chemosmotic electron transport that occurs in the mitochondria.

Light energy causes the removal of an electron from a P680 molecule that is part of Photosystem II, the electron is transferred to an acceptor molecule (primary acceptor), and then passes downhill to Photosystem I through a conveyor chain of electrons The P680 requires an electron that is taken from the water by breaking it into H + ions and O-2 ions. These O-2 ions combine to form O2 that is released into the atmosphere.

The light acts on the P700 molecule of Photosystem I, causing an electron to be raised to a higher potential. This electron is accepted by a primary acceptor (different from the one associated with Photosystem II).

The electron goes through a series of redox reactions again, and finally combines with NADP + and H + to form NADPH, a carrier of H needed in the independent phase of light.

Electron of photosystem II replaces the excited electron of the P700 molecule.

There is therefore a continuous flow of electrons (non-cyclic) from water to NADPH, which is used for carbon fixation.

Cyclic electron flow occurs in some eukaryotes and in photosynthetic bacteria. NADPH does not occur, only ATP. This also occurs when the cell requires additional ATP, or when there is no NADP + to reduce it to NADPH.

In Photosystem II, the "pumping" of H ions into the thylakoids (from the stroma of the chloroplast) and the conversion of ADP + P to ATP is motorized by an electron gradient established in the thylakoid membrane.

7 0
3 years ago
Monochromatic light with a wavelength of 384 nm passes through a single slit and falls on a screen 86 cm away. If the distance o
valkas [14]
This is a Fraunhofer single slit experiment, where the light passing through the slit produces an interference pattern on the screen, and where the dark bands (minima of diffraction) are located at a distance of
y= \frac{m\lambda D}{a}
from the center of the pattern. In the formula, m is the order of the minimum, \lambda the wavelenght, D the distance of the screen from the slit and a the width of the slit.

In our problem, the distance of the first-order band (m=1) is y=0.22 cm. The distance of the screen is D=86 cm while the wavelength is \lambda = 384 nm=384 \cdot 10^{-7}cm. Using these data and re-arranging the formula, we can find a, the width of the slit:
a= \frac{m \lambda D}{y}= \frac{1 \cdot 384 \cdot 10^{-7}cm \cdot 86 cm}{0.22 cm}=0.015 cm
3 0
3 years ago
A positively charged particle moves through an electric field. As part of a complicated trajectory, the particle passes through
kow [346]

Answer:

(B) The speed is larger at A than at B.

Explanation:

Point B, the final point of the trajectory, has higher electric potential than point A, the initial point of the trajectory, so the electric potential energy of the charged particle increases, which means that its kinetic energy must be decreasing, thus the speed at B must be lower than the speed at A.

8 0
3 years ago
A 125-kg astronaut (including space suit) acquires a speed of 2.50 m/s by pushing off with her legs from a 1900-kg space capsule
ryzh [129]

(a) 0.165 m/s

The total initial momentum of the astronaut+capsule system is zero (assuming they are both at rest, if we use the reference frame of the capsule):

p_i = 0

The final total momentum is instead:

p_f = m_a v_a + m_c v_c

where

m_a = 125 kg is the mass of the astronaut

v_a = 2.50 m/s is the velocity of the astronaut

m_c = 1900 kg is the mass of the capsule

v_c is the velocity of the capsule

Since the total momentum must be conserved, we have

p_i = p_f = 0

so

m_a v_a + m_c v_c=0

Solving the equation for v_c, we find

v_c = - \frac{m_a v_a}{m_c}=-\frac{(125 kg)(2.50 m/s)}{1900 kg}=-0.165 m/s

(negative direction means opposite to the astronaut)

So, the change in speed of the capsule is 0.165 m/s.

(b) 520.8 N

We can calculate the average force exerted by the capsule on the man by using the impulse theorem, which states that the product between the average force and the time of the collision is equal to the change in momentum of the astronaut:

F \Delta t = \Delta p

The change in momentum of the astronaut is

\Delta p= m\Delta v = (125 kg)(2.50 m/s)=312.5 kg m/s

And the duration of the push is

\Delta t = 0.600 s

So re-arranging the equation we find the average force exerted by the capsule on the astronaut:

F=\frac{\Delta p}{\Delta t}=\frac{312.5 kg m/s}{0.600 s}=520.8 N

And according to Newton's third law, the astronaut exerts an equal and opposite force on the capsule.

(c) 25.9 J, 390.6 J

The kinetic energy of an object is given by:

K=\frac{1}{2}mv^2

where

m is the mass

v is the speed

For the astronaut, m = 125 kg and v = 2.50 m/s, so its kinetic energy is

K=\frac{1}{2}(125 kg)(2.50 m/s)^2=390.6 J

For the capsule, m = 1900 kg and v = 0.165 m/s, so its kinetic energy is

K=\frac{1}{2}(1900 kg)(0.165 m/s)^2=25.9 J

3 0
3 years ago
Other questions:
  • The rotational speeds of four generators are listed in RPM (revolutions per minute). Arrange the generators in order based on th
    13·2 answers
  • Which of the following actions would require the company to obtain a permit for discharge from the EPA? a. Releasing water back
    5·1 answer
  • If a car is moving at 90 km/h and it rounds a corner, also at 90 km/h, does it maintain a constant speed? A constant velocity? I
    5·1 answer
  • A body with a mass of 2,000 kg is lifted to a height of 15 m within a time of 15 s. Which one of the following statements concer
    5·1 answer
  • Explain, using the particle theory of matter, how diffusion takes place.
    5·1 answer
  • AYUDA!!!!
    6·1 answer
  • What are the advantages of strength exercises?
    12·1 answer
  • 3. Twelve waves pass a dock in 3.60 If the waves are traveling at 19.5 m/s , what is the wavelength of the waves?
    14·1 answer
  • A student wants to draw a model of an atom. Which statement describes how to find the number of neutrons to include in the model
    9·1 answer
  • Which two factors decrease as the kinetic energy of the particles in an object decrease
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!