The information given in the question is not enough to determine the acidity of the solution. This is because, acidity can only be found with the equation: pH = -log [H+].
In order to determine the acidity of the solution, the half titration point value is needed, this will make it possible to determine the value of H30+. If the half point titration value is known, then Ka will be equivalent to pH and the value will be evaluated using the equation: - log (1.6 * 10^-10).
Answer:
positive charge
Explanation:
Protons are positively charged
Answer:
4.07
Explanation:
There is some info missing. I think this is the original question.
<em>A solution is prepared at 25 °C that is initially 0.057 M in nitrous acid (HNO₂), a weak acid with Ka = 4.5 × 10⁻⁴, and 0.30 M in sodium nitrite (NaNO₂). Calculate the pH of the solution. Round your answer to 2 decimal places.</em>
<em />
Nitrous acid is a weak acid and nitrite (coming from sodium nitrite) is its conjugate base. Together, the form a buffer system. We can calculate its pH using the Henderson-Hasselbach equation.
pH = pKa + log [base]/[acid]
pH = -log 4.5 × 10⁻⁴ + log 0.30/0.057
pH = 4.07