Answer:
When a positive charged object is placed near a conductor electrons are attracted the the object. ... When electric voltage is applied, an electric field within the metal triggers the movement of the electrons, making them shift from one end to another end of the conductor. Electrons will move toward the positive side. As you know, electrons are always moving. They spin very quickly around the nucleus of an atom. As the electrons zip around, they can move in any direction, as long as they stay in their shell.
Answer:
71.19 C
Explanation:
25C = 25 + 273 = 298 K
Applying the ideal gas equation we have

where P, V and T are the pressure, volume and temperature of the gas at 1st and 2nd stage, respectively. We can solve for the temperature and the 2nd stage:

By Boyle's law:
P₁V₁ = P₂V₂
70*8 = P<span>₂*4
</span>P<span>₂*4 = 70*8
</span>
P<span>₂ = 70*8/4 = 140
</span>
P<span>₂ = 140 kiloPascals.</span>
Answer: waves transport energy, not water. As a wave crest passes, the water particles move in circular paths. The movement of the floating inner tube is simulacra to the movement of the water particles. Water particles rise as a wave crest approaches.
Explanation: