All three windows are the same size.
A has 10 complete waves visible through the window. B has 3, and C has 4.
So A must have the smallest wavelengths.
Answer:
Option A applies.
A. Greater than its escape speed from the mass within the volume
Explanation:
Here it is mentioned that the spherical volume is large enough for the space to be considered as homogeneous. Also, the pressure within the volume is negligible, so that will not result into the re collapse of the Universe. Now as per our knowing, Hubble's Law relates the average speed of the particle to the distance R between the Earth and the particle. So, if the particle's speed is greater than it's escape speed from the mass within the volume, then the Universe is bound to re collapse back again. Option A applies.
Answer:
B. has a smaller frequency
C. travels at the same speed
Explanation:
The wording of the question is a bit confusing, it should be short/long for wavelength and low/high for frequency. I assume low wavelength mean short wavelength.
All sound wave travel with the same velocity(343m/s) so wavelength doesn't influence its speed at all. It won't be faster or slower, it will have the same speed.
Velocity is a product of wavelength and frequency. So, a long-wavelength sound wave should have a lower frequency.
The option should be:
A. travels slower -->false
B. has a smaller frequency -->true
C. travels at the same speed --->true
D. has a higher frequency --->false
E. travels faster has the same frequency --->false
Answer:
The slope of a position-time graph can be calculated as:

where
is the increment in the y-variable
is the increment in the x-variable
We can verify that the slope of this graph is actually equal to the velocity. In fact:
corresponds to the change in position, so it is the displacement, 
corresponds to the change in time
, so the time interval
Therefore the slope of the graph is equal to

which corresponds to the definition of velocity.