Answer:
8.75
Explanation:
First, find the force of friction.
Kinetic energy = work done by friction
½ mv² = Fd
½ (3.9 kg) (2.9 m/s)² = F (1.4 m)
F = 11.7 N
Next, find the distance at the new velocity.
Kinetic energy = work done by friction
½ mv² = Fd
½ (3.9 kg) (2.5 × 2.9 m/s)² = (11.7 N) d
d = 8.75 m
This question is poorly stated, but I assume you mean what conditions are needed. It would have to be cold outside, correct?
Answer:
<em>The magnitude of the force is 10 N</em>
Explanation:
<u>Coulomb's Law</u>
The electrostatic force between two charged objects is directly proportional to the product of their charges and inversely proportional to the square of the distance between the two objects.
Written as a formula:
Where:
q1, q2 = the objects' charge
d= The distance between the objects
We have two identical charges of q1=q2=1 c separated by d=30000 m, thus the magnitude of the force is:
F = 10 N
The magnitude of the force is 10 N