Answer:
Final Length = 30 cm
Explanation:
The relationship between the force applied on a string and its stretching length, within the elastic limit, is given by Hooke's Law:
F = kΔx
where,
F = Force applied
k = spring constant
Δx = change in length of spring
First, we find the spring constant of the spring. For this purpose, we have the following data:
F = 50 N
Δx = change in length = 25 cm - 20 cm = 5 cm = 0.05 m
Therefore,
50 N = k(0.05 m)
k = 50 N/0.05 m
k = 1000 N/m
Now, we find the change in its length for F = 100 N:
100 N = (1000 N/m)Δx
Δx = (100 N)/(1000 N/m)
Δx = 0.1 m = 10 cm
but,
Δx = Final Length - Initial Length
10 cm = Final Length - 20 cm
Final Length = 10 cm + 20 cm
<u>Final Length = 30 cm</u>
Explanation:
the weight of the people inside the bus
Answer:
C
Explanation:
I think it's C, because at that point, you are going fastest. Sorry if im wrong, hope this helps.
Answer:
False
Explanation:
that is cohesion. adhesion is force between dissimilar molecules of a body
Answer:
W =23807.68 N
Explanation:
given,
surface area of wing = 19.4 m²
speed over top wing = 67 m/s
speed under wing = 51 m/s
density of air = 1.3 kg/m³
weight of plane
From Bernoulli's principle

where 1 and 2 are two different locations at the same geo potential level
so if we call 1 the lower surface and 2 the upper surface,
we find the pressure differential, P₁ -P₂
then the force acting on the plane is
F=P A
F=1227.2 x 19.4
F =23807.68 N
weight of the plane
W =23807.68 N