1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Scrat [10]
3 years ago
6

A bird uses 10 N of force to pull a worm out of the ground a distance of 3 inches. How much work did the bird do?

Physics
1 answer:
pochemuha3 years ago
6 0

Answer:

The work done by the bird is 0.762 J

Explanation:

Given;

force applied by the bird, f = 10 N

distance the bird moved the worm, d = 3 inches = 0.0762 m

The work done by the bird is given by;

W = F x d

where;

W is the work done by the bird

d is the distance the bird moved the load

Substitute the given values and estimate the work done by the bird;

W = 10 x 0.0762

W = 0.762 J

Therefore, the work done by the bird is 0.762 J

You might be interested in
Please help on this one?
Lelu [443]

The easiest way to answer this question is just to get the answer first. The answer is A with the added comment that no chemical reaction has taken place.

Layered means that the chemicals are not soluble in one another. B is not the answer.

C is eliminated by what what was said about A.

D a solution is not a pure substance (singular) by itself. There are at least 2 chemicals together.

6 0
3 years ago
A blue ball is thrown upward with an initial speed of 21.8 m/s, from a height of 0.9 meters above the ground. 2.7 seconds after
worty [1.4K]
I can think of two possible and logical questions for the problem given. First, you can calculate for the maximum height reached by the blue ball. Second, you can compute the length of time for the two balls to be at the same height. If so, the solution are as follows:

When the object is thrown upwards or when the object is dropped from a height, the only force acting upon it is the gravitational force. Because of this, it simplifies equations of motion.

1. For the maximum height, the equation is
H = v₀²/2g
where
v₀ is the initial speed
g is the acceleration due to gravity equal to 9.81 m/s²

For the blue ball, v₀ = 21.8 m/s. Substituting the values:
H = (21.8 m/s)²/2(9.81m/s²)
H = 24.22 m
The maximum height reached by the blue ball is 24.22 m + 0.9 = 25.12 m.

2. For this, you equate the y values of both balls:

y for red ball = y for blue ball
v₀t + 0.5gt² = v₀t + 0.5gt²
(10.4 m/s)t + 0.5(9.81 m/s²)(t²) + 26.6 m = (21.8 m/s)t + 0.5(9.81 m/s²)(t²) + 0.9 m
Solving for t, 
t = 2.25 seconds

Thus, the two balls would be at the same height after 2.25 seconds.
3 0
3 years ago
A car travels a distance of 100 km. For the first 30 minutes it is driven at a constant speed of 80 km/hr. The motor begins to v
gregori [183]

Explanation:

First, we need to determine the distance traveled by the car in the first 30 minutes, d_{\frac{1}{2}}.

Notice that the unit measurement for speed, in this case, is km/hr. Thus, a unit conversion of from minutes into hours is required before proceeding with the calculation, as shown below

                                          d_{\frac{1}{2}\text{h}} \ = \ \text{speed} \ \times \ \text{time taken} \\ \\ \\ d_{\frac{1}{2}\text{h}} \ = \ 80 \ \text{km h}^{-1} \ \times \ \left(\displaystyle\frac{30}{60} \ \text{h}\right) \\ \\ \\ d_{\frac{1}{2}\text{h}} \ = \ 80 \ \text{km h}^{-1} \ \times \ 0.5 \ \text{h} \\ \\ \\ d_{\frac{1}{2}\text{h}} \ = \ 40 \ \text{km}

Now, it is known that the car traveled 40 km for the first 30 minutes. Hence, the remaining distance, d_{\text{remain}} , in which the driver reduces the speed to 40km/hr is

                                             d_{\text{remain}} \ = \ 100 \ \text{km} \ - \ 40 \ \text{km} \\ \\ \\ d_{\text{remain}} \ = \ 60 \ \text{km}.

Subsequently, we would also like to know the time taken for the car to reach its destination, denoted by  t_{\text{remian}}.

                                              t_{\text{remain}} \ = \ \displaystyle\frac{\text{distance}}{\text{speed}} \\ \\ \\ t_{\text{remain}} \ = \ \displaystyle\frac{60 \ \text{km}}{40 \ \text{km hr}^{-1}} \\ \\ \\ t_{\text{remain}} \ = \ 1.5 \ \text{hours}.

Finally, with all the required values at hand, the average speed of the car for the entire trip is calculated as the ratio of the change in distance over the change in time.

                                                     \text{speed} \ = \ \displaystyle\frac{\Delta d}{\Delta t} \\ \\ \\ \text{speed} \ = \ \displaystyle\frac{100 \ \text{km}}{(0.5 \ \text{hr} \ + \ 1.5 \ \text{hr})} \\ \\ \\ \text{speed} \ = \ \displaystyle\frac{100 \ \text{km}}{2 \ \text{hr}} \\ \\ \\ \text{speed} \ = \ 50 \ \text{km hr}^{-1}

Therefore, the average speed of the car is 50 km/hr.

8 0
3 years ago
A 2kg hockey puck is sliding across the ice skating rink at 2 m/s. A player hits the puck so it's velocity increases to 10 m/s.
konstantin123 [22]

The work done on the puck is 96 J

Explanation:

According to the work-energy theorem, the work done on the hockey puck is equal to the change in kinetic energy of the puck.

Mathematically:

W=K_f -K_i= \frac{1}{2}mv^2-\frac{1}{2}mu^2

where

K_f = \frac{1}{2}mv^2 is the final kinetic energy of the puck, with

m = 2 kg being the mass of the puck

v = 10 m/s is the final speed

K_i = \frac{1}{2}mu^2 is the initial kinetic energy of the puck, with

u = 2 m/s being the initial speed of the puck

Substituting numbers into the equation, we find the work done by the player on the puck:

W=\frac{1}{2}(2)(10)^2 - \frac{1}{2}(2)(2)^2=96 J

Learn more about work and kinetic energy:

brainly.com/question/6763771  

brainly.com/question/6443626  

brainly.com/question/6536722

#LearnwithBrainly

6 0
3 years ago
What is the current in a 120V circuit if the resistance is 20Ω?
Kaylis [27]

We have: I=\frac{U}{R}=\frac{120}{20}=6A

ok done. Thank to me :>

6 0
2 years ago
Other questions:
  • Upper section of the lithosphere
    5·2 answers
  • The speed of light in water is 2.25 x 108 m/s. What is true about the index of refraction of water? A. It is less than 1. B. It
    11·2 answers
  • A piston above a liquid in a closed container has an area of 1m2. The piston carries a load of 350 kg. What will be the external
    10·1 answer
  • How can the center of gravity of a rigid body be determined?
    10·1 answer
  • 26. The equation E=hf describes the energy of each photon in a beam of light. If Planck’s constant, h, were larger, would photon
    13·1 answer
  • ¿Cuál es la masa aproximada del aire en una habitación de 5.6 m * 3.8 m * 2.8 m?
    13·1 answer
  • ______________ is a physical property and can be _______________ or _____________.
    6·1 answer
  • When the comet passes close to the sun, it has a visible tail. Typically, the comet is only visible for a matter of days while i
    8·1 answer
  • Is a man kicking ball potential or kinetic?
    9·1 answer
  • Two parallel plates of area 0.155 m2<br> are separated by 0.00100 m. What<br> is their capacitance?
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!