Answer:
Explanation:
We Often solve the the integral neutron transport equation using the collision probability (CP) method which usually requires flat flux (FF) approach. In this research, it has been carried out in the cylindrical nuclear fuel cell with the spatial of mesh with quadratic flux approach. This simply means that the neutron flux at any region of the nuclear fuel cell is forced to follow the pattern of a quadratic function.
Furthermore The mechanism may be referred to as the process of non-flat flux (NFF) approach. The parameters that calculated in this study are the k-eff and the distribution of neutron flux. The result shows that all parameters are in accordance with the result of SRAC.
Answer:
The lever arm could decrease or increase depending of the initial angle.
Explanation:
The lever arm d is calculated by:
d = rsin(θ)
where r is the radius and θ the angle between the force and the radius.
So, the increse or decrees of d depends of the sin of the angle θ, if the initial angle is greather than 90° and the angle decrease to an angle closer to 90°, the lever arm will increase but if the initial angle is 90° or lower and the angle decrease, the lever arm will decrease.
Answer:
<em>a) 3.6 ft</em>
<em>b) 12.4 ft</em>
Explanation:
Distance between mirrors = 6.2 ft
difference from from the mirror you face = 1.8 ft
a) you stand 1.8 ft in front of the mirror you face.
According to plane mirror rules, the image formed is the same distance inside the mirror surface as the distance of the object (you) from the mirror surface. From this,
your distance from your first "front" image = 1.8 ft + 1.8 ft = <em>3.6 ft</em>
b) The mirror behind you is 6.2 - 1.8 = 4.4 ft behind you.
the back mirror will be reflected 3.6 + 4.4 = 8 ft into the front mirror,
the first image of your back will be 4.4 ft into the back mirror,
therefore your distance from your first "back" image = 8 + 4.4 = <em>12.4 ft</em>