Hello!
Recall the equation for gravitational force:

Fg = Force of gravity (N)
G = Gravitational constant
m1, m2 = masses of objects (kg)
r = distance between the objects' center of masses (m)
There is a DIRECT relationship between mass and gravitational force.
We are given:

If we were to double one mass and triple another, according to the equation:

Thus:

Answer:
245.25 J
Explanation:
Potential Energy = m g h
= 10 * 9.81 * 2.5 = 245.25 J
53.3 km/h is the average amount of the car trip if 80km
Refer to the diagram shown below.
From the geometry, obtain
x = 2.5 - 0.55 = 1.95 m
cos θ = 1.95/2.5 = 0.78
θ = cos⁻¹ 0.78 = 38.74°
From the free body diagram, the tension in the chain is 450 N.
F is the centripetal force,
W is Dee's weight.
The components of the tension are
Horizontal component = 450 sin(38.74°) = 281.6 N, acting left.
Vertical component = 450 cos(38.74°) = 351.0 N, acting upward.
Answers:
Horizontal: 281.6, acting left.
Vertical: 351.0 N, acting upward.