Answer:
<em><u>Solid</u> is the state in which matter maintains a fixed volume and shape; liquid is the state in which matter adapts to the shape of its container but varies only slightly in volume; and gas is the state in which matter expands to occupy the volume and shape of its container.</em>
The work done to push the refrigerator is 500 Nm.
Explanation:
Work done is the measure of force required to move any object from one point to another. So it is calculated as the product of force and displacement.
If the force increases the work done will increase and similarly, the increase in displacement increases the work done. So to push the refrigerator work should be done on the object and not by the object.
As the force is 100 N and the displacement is 5 m then, work done can be measured as
Work = Force × Displacement
Work = 100 × 5 = 500 Nm
So the work done to push the refrigerator is 500 Nm.
Is the physical phenomena arising from the force caused by magnet objects that produce fields that attract or repel other objects while magnetic field is a region around the magnetic material or a moving electric charge within the force of magnetism acts
Answer
given,
mass of steel ball, M = 4.3 kg
length of the chord, L = 6.5 m
mass of the block, m = 4.3 Kg
coefficient of friction, μ = 0.9
acceleration due to gravity, g = 9.81 m/s²
here the potential energy of the bob is converted into kinetic energy



v = 11.29 m/s
As the collision is elastic the velocity of the block is same as that of bob.
now,
work done by the friction force = kinetic energy of the block




d = 7.23 m
the distance traveled by the block will be equal to 7.23 m.
Answer:
78.4 m
Explanation:
Using newton's equation of motion,
S = ut + 1/2gt²......................... Equation 1
Where S = Height, t = time, u = initial velocity, g = acceleration due to gravity.
Note: Taking upward to be negative, and down ward positive
Given: u = 49 m/s, t = 2.0 s, g = -9.8 m/s²
Substitute into equation 1
S = 49(2) - 1/2(9.8)(2)²
S = 98 - 19.6
S = 78.4 m
Hence the height of the ball two seconds later = 78.4 m