Answer:potential difference is more or less like voltage. Using ohms, V=IR
Where V is Voltage
I is Current =0.4A
R is Resistance=20ohms
V=0.4*20
V=8V
Hence the potential difference will be 8V.
ii) V=0.4*30
V=12V
Explanation:
The voltage of potential difference is directly proportional to the current and the resistance. So if one increase or decrease, it will have impact on the other.
From the calculations, when the resistance increase, the voltage will increase to appreciate the change.
Answer:
<em>B) 1.0 × 10^5 V</em>
Explanation:
<u>Electric Potential Due To Point Charges
</u>
The electric potential produced from a point charge Q at a distance r from the charge is

The total electric potential for a system of point charges is equal to the sum of their individual potentials. This is a scalar sum, so direction is not relevant.
We must compute the total electric potential in the center of the square. We need to know the distance from all the corners to the center. The diagonal of the square is

where a is the length of the side.
The distance from any corner to the center is half the diagonal, thus


The total potential is

Where V1 and V2 are produced by the +4\mu C charges and V3 and V4 are produced by the two opposite charges of
. Since all the distances are equal, and the charges producing V3 and V4 are opposite, V3 and V4 cancel each other. We only need to compute V1 or V2, since they are equal, but they won't cancel.


The total potential is


I would say the answer is 3 because by falling technically the ball would be kind of moving in the air. Plus potential energy is when for example a soccer ball isnt moving