Answer:
0.208mole of CO2
Explanation:
First, let us calculate the number of mole of HC3H3O2 present.
Molarity of HC3H3O2 = 0.833 mol/L
Volume = 25 mL = 25/100 = 0.25L
Mole =?
Mole = Molarity x Volume
Mole = 0.833 x 0.25
Mole of HC3H3O2 = 0.208mole
Now, we can easily find the number of mole of CO2 produce by doing the following:
NaHCO3 + HC2H3O2 → NaC2H3O2 + H2O + CO2
From the equation,
1mole of HC2H3O2 produced 1 mole of CO2.
Therefore, 0.208mole of HC2H3O2 will also produce 0.208mole of CO2
The balanced equation:
Mg+2HCl⇒ MgCl₂+H₂
Answer:
The answer is
<h2>2.7 g/mL</h2>
Explanation:
The density of a substance can be found by using the formula

From the question
mass of aluminum = 40.5 g
volume = 15 mL
Substitute the values into the above formula and solve for the density
We have

We have the final answer as
<h3>2.7 g/mL</h3>
Hope this helps you
Answer: The pentose phosphate pathway (PPP) is localized to the cytosol because fatty acid synthesis uses the NADPH generated by the PPP.
Explanation:
The pentose phosphate pathway is mainly catabolic and provides an alternative glucose oxidizing pathway for the generation of NADPH that is required for reductive biosynthetic reactions such as those of cholesterol biosynthesis, bile acid synthesis, steroid hormone biosynthesis, and fatty acid synthesis.
Fatty acid biosynthesis occurs in the cytosol and requires the reducing equivalent NADPH in large amounts. <em>The main source of generating NADPH in animal cells, the pentose phosphate pathway is therefore, localized in the cytosol in order to furnish a strongly reducing environment for fatty acid biosynthesis to proceed.</em>