Answer:
n= 0.03 moles
Explanation:
Using the ideal gas law:
PV=nRT
nRT=PV
n= PV/RT
n: moles
P: pressure in atm
V= volume in L
R= Avogadro's constant = 0.0821
T= Temperature in K => ºC+273.15
n= (0.925 atm)(0.80 L) / (0.0821)(300.15 K)
n= 0.03 moles
% H = 100 - ( 52.14 + 34.73 )=13.13 %
<span>assume 100 g of this compound </span>
<span>mass H = 13.13 g </span>
<span>moles H = 13.13 g / 1.008 g/mol=13 </span>
<span>mass C = 52.14 g </span>
<span>moles C = 52.14 g/ / 12.011 g/mol=4 </span>
<span>mass O = 34.73 g </span>
<span>moles O = 34.73 g/ 15.999 g/mol=2 </span>
<span>the empirical formula is C4H13O2</span>
2 is your answer hope you get it right
Metal conductivity generally goes down or resistivity goes up with temperature goes up.