Boyle's law is modeled by the equation p1v1=p2v2.
V2 = 4.4579 L
Since pressure is constant, use Charle’s law.
Charles's law, a statement that the volume occupied by a fixed amount of gas is directly proportional to its absolute temperature, if the pressure remains constant.
V(olume) 1 = V(olume) 2
————— —————
T(emperature) 1 T(emperature)2
4.00 L = V2
———- ———
297 K 331 K
Cross multiply
(4.00 L x 331 K) = (297 K x V2)
Simplify
1324 L/K = 297 K x V2
Isolate V2 by dividing out 297 K
1324 L/K = V2
————
297 K
(This cancels out the kelvin and leaves you with Liters as the volume measure)
V2 = 4.4579 L
Round to significant digits if required
IBR is the thermal decomposition of iodine(I) bromide to produce iodine and
bromine. This reaction takes place at a temperature of over 40,5°C and is written as:
<span>2IBr ⇄ I2 + Br2
</span>
Equilibrium is a state of dynamic balance where the ratio of the product and reactant concentrations is constant.<span> You can calculate the equilibrium concentration if you know the equilibrium constant Kc (Kc=I^2*Br^2/IBR^2) and the initial concentration for the reaction. The initial concentration is obtained from ICE Table.</span>
As the water russhes toward the shore, it rises because it is pushing against it.<span />
Answer:
x-component of velocity = 5.7 m/s
y-component of velocity = -1.4 m/s
Explanation:
Use first equation of motion to find components of velocity at a given time:

where,
is the final velocity,
is the initial velocity,
is the acceleration and
is the time.
Given:


