Answer:
Explanation:
Ionization energy:
It is the minimum amount of energy required to remove the electron from isolated gaseous atom to make the ion.
As we move from left to right across the periodic table the number of valance electrons in an atom increase. The atomic size tend to decrease in same period of periodic table because the electrons are added with in the same shell.
When the electron are added, at the same time protons are also added in the nucleus. The positive charge is going to increase and this charge is greater in effect than the charge of electrons. This effect lead to the greater nuclear attraction. The electrons are pull towards the nucleus and valance shell get closer to the nucleus. As a result of this greater nuclear attraction atomic radius decreases and ionization energy increases because it is very difficult to remove the electron from atom and more energy is required. Where as,
When we move down the group atomic radii increased with increase of atomic number. The addition of electron in next level cause the atomic radii to increased. The hold of nucleus on valance shell become weaker because of shielding of electrons thus size of atom increased.
As the size of atom increases the ionization energy from top to bottom also decreases because it becomes easier to remove the electron because of less nuclear attraction and as more electrons are added the outer electrons becomes more shielded and away from nucleus.
The correct answers are ,
A) C
B) N
C) Ti
D) Zn
E) Fe
F) Phosphorus
G)Calcium
H) Helium
I) Lead
J) Silver
<h3>How are elements named?</h3>
Elements have been given names based on a variety of factors, <u>including their characteristics</u>, the compound or ore from which they were extracted, the method by which they were found or acquired, mythical characters, locations, and well-known individuals. Some components have <u>names that are descriptive and are based on one of their attributes.</u>
The International Union of Pure and Applied Chemistry chooses the official element names and symbols (IUPAC). However, different nations frequently use similar names and symbols for elements. Official names and symbols for elements are not given until after their discovery has been confirmed. The discoverer may then suggest a name and a symbol.
There are name standards for several element groupings. Names of halogens end in -ine. All noble gas names, save helium, end in -on. The names of most other elements finish with -ium.
To learn more about elements:
brainly.com/question/14347616
#SPJ4
The answer is 57.14%.
First we need to calculate molar mass of <span>NaHCO3. Molar mass is mass of 1 mole of a substance. It is the sum of relative atomic masses, which are masses of atoms of the elements.
Relative atomic mass of Na is 22.99 g
</span><span>Relative atomic mass of H is 1 g
</span><span>Relative atomic mass of C is 12.01 g
</span><span>Relative atomic mass of O is 16 g.
</span>
Molar mass of <span>NaHCO3 is:
22.99 g + 1 g + 12.01 g + 3 </span>· <span>16 g = 84 g
Now, mass of oxygen in </span><span>NaHCO3 is:
3 </span>· 16 g = 48 g
mass percent of oxygen in <span>NaHCO3:
48 g </span>÷ 84 g · 100% = 57.14%
Therefore, <span>the mass percent of oxygen in sodium bicarbonate is 57.14%.</span>
Answer:
This is google's answer for the last question
Explanation:
The kinetic energy increases as the particles move faster. The potential energy increases as the particles move farther apart. How are thermal energy and temperature related? When the temperature of an object increases, the average kinetic energy of its particles increases.