Answer:
a) θ = 2500 radians
b) α = 200 rad/s²
Explanation:
Using equations of motion,
θ = (w - w₀)t/2
θ = angle turned through = ?
w = final angular velocity = 1420 rad/s
w₀ = initial angular velocity = 420
t = time taken = 5s
θ = (1420 - 420) × 5/2 = 2500 rads
Again,
w = w₀ + αt
α = angular accelaration = ?
1420 = 420 + 5α
α = 1000/5 = 200 rad/s²
Answer:
c. is more than that of the fluid.
Explanation:
This problem is based on the conservation of energy and the concept of thermal equilibrium

m= mass
s= specific heat
\DeltaT=change in temperature
let s1= specific heat of solid and s2= specific heat of liquid
then
Heat lost by solid= 
Heat gained by fluid=
Now heat gained = heat lost
therefore,
1000 S_2=800 S_1
S_1=1.25 S_2
so the specific heat of solid is more than that of the fluid.
Explanation:
In order to find out if the keys will reach John or not, we can use the formula of projectile motion to find the maximum height reached by the keys:
H = V²Sin²θ/2g
where,
V = Launch Speed = 18 m/s
θ = Launch Angle = 40°
g = 9.8 m/s²
Therefore,
H = (18 m/s)²[Sin 40°]²/(2)(9.8 m/s²)
H = 6.83 m
Hence, the maximum height that can be reached by the projectile or the keys is greater than the height of John's Balcony(5.33 m).
Therefore, the keys will make it back to John.
The right answer for the question that is being asked and shown above is that: "A.tectonic activity concentrated in certain areas." A piece of evidence did Alfred Wegener use to develop the theory of continental drift is that <span>A.tectonic activity concentrated in certain areas</span>
ANSWER:
The easiest way to get a fairly accurate measure of your water flow rate is to time yourself filling up a bucket. So for example if you fill up a 10 litre bucket in 1.5 minutes, then your flow rate will be: 10/1.5 = 6.66 Litres per minute.