Answer: Dust released in the air could be radioactive.
Explanation:
Uranium is a radioactive element. It decays naturally to attain stability. While mining, the dust displaces into the air causing not only harm to environment but for the workers as well. The released in the air could be radioactive which would be inhaled posing threat for lung cancer.
Thus, the correct answer is dust released in the air could be radioactive is a concern about mining Uranium.
F = G Mm/r²
mg = G Mm/r²
g = GM/r²
At centre of earth, r=0
g = GM/0
g =0
Your answer is C)
a)t=2.78 sec
b)R=835.03 m
c)
Explanation:
Given that
h= 38 m
u=300 m/s
here given that
The finally y=0
So
t=2.78 sec
The horizontal distance,R
R= u x t
R=300 x 2.78
R=835.03 m
The vertical component of velocity before the strike
To solve this problem we will apply the concepts related to load balancing. We will begin by defining what charges are acting inside and which charges are placed outside.
PART A)
The charge of the conducting shell is distributed only on its external surface. The point charge induces a negative charge on the inner surface of the conducting shell:
. This is the total charge on the inner surface of the conducting shell.
PART B)
The positive charge (of the same value) on the external surface of the conducting shell is:

The driver's net load is distributed through its outer surface. When inducing the new load, the total external load will be given by,



Answer:
A. F=6.65*10^{-10}N
B. south - north
Explanation:
A) We use the Lorentz force
F = qv X B
|F| = qvB
to calculate the magnitude of the force we need the speed of the of the ball.

and by replacing in the formula for the magnitude of the force we have (taking into account the excess of electrons)

B)
b. south - north (by the rigth hand rule)
I hope this is usefull for you
regards