Answer:
2.5 moles of Al
Explanation:
We'll begin by calculating the number of mole in 127 g of Al₂O₃. This can be obtained as follow:
Mass of Al₂O₃ = 127 g
Molar mass of Al₂O₃ = 101.961 g/mol
Mole of Al₂O₃ =?
Mole = mass / molar mass
Mole of Al₂O₃ = 127 / 101.961
Mole of Al₂O₃ = 1.25 mole
Finally, we shall determine the number of mole of Al that reacted. This can be obtained as follow:
4Al + 3O₂ —> 2Al₂O₃
From the balanced equation above,
4 moles of Al reacted to produce 2 moles of Al₂O₃.
Therefore, Xmol of Al will react to produce 1.25 moles of Al₂O₃ i.e
Xmol of Al = (1.25 × 4)/2
Xmol of Al = 2.5 moles.
Thus, 2.5 moles of Al is needed for the reaction.
Answer:
There is no exact answer for this question tbh.
There are 2071.4662 grams of glucose in 11.5 moles.
Per 1 mole there are 180.15588 grams of glucose. 180.5588 x 11.5 =2076.4262
The molecular formula for a monocyclic hydrocarbon with 14 carbons and 2 triple bond is C₁₄H₂₀
<h3>Molecular formula</h3>
A formula that gives the number of atom of each element present in a one molecule or a compound.
<h3>Monocyclic hydrocarbons</h3>
The name of the saturated hydrocarbons formed by the name attaching the perfix cyclo to the name of acyclic unstaturated hydrocarbon
The molecular formula for a monocyclic hydrocarbon with 14 carbon and 2 triple bonds is C₁₄H₂₀
Learn more about the molecular formula on
brainly.com/question/11558543
#SPJ4