Impulse = Force * times and also Impulse = change in momentum.
Given that the mass does not change, change if momentum = mass * (final velocity - initial velocity)
Given that you know mass and initial velocity (which is the velicity before the cart hits the wall) you need the final velocity (which is the velocity after the cart hits the wall).
Answer: the velocity of the cart after it hits the wall.
The answer is underground
155Ω
Explanation:
R = R ref ( 1 + ∝ ( T - Tref)
where R = conduction resistance at temperature T
R ref = conductor resistance at reference temperature
∝ = temperature coefficient of resistance for conductor
T = conduction temperature in degrees Celsius
T ref = reference temperature that ∝ is specified at for the conductor material
T = 600 k - 273 k = 327 °C
Tref = 300 - 273 K = 27 °C
R = 50 Ω ( 1 + 0.007 ( 327 - 27) )
R = 155Ω
Answer:
I = 0.636*Imax
Explanation:
(a) To find the fraction of the maximum intensity at a distance y from the central maximum you use the following formula:
(1)
I: intensity of light
Imax: maximum intensity of light
d: separation between slits = 0.200mm = 0.200 *10^-3 m
L: distance from the screen = 613cm = 0.613 m
y: distance to the central peak of the interference pattern
λ: wavelength of light = 656.3 nm = 656.3 *10^-9 m
You replace the values of all variables in the equation (1):

Hence, the fraction of the maximum intensity is I = 0.636*Imax