Suppose car A is moving with a velocity Va, and car b with a velocity Vb,
According the principle of conservation of momentum:
Va x Ma + Vb x Mb = (Ma + Mb) V
V = (Va x Ma + Vb x Mb)/(Ma +Mb)
V = speed of cars after coupling
V = (Va x 20 mg + Vb x 15 mg)/(20 mg + 15 mg)
Put in the values of Va and Vb, and get the V
A. The cliff was 30.7 m high
B. I also got 9.5 as the horizontal distance
Here is my work, I find making charts like this one to find knowns and unknowns can be helpful
Tycho Brahe ( 1546 - 1601 ) was a Danish astronomer known for his accurate astronomical and planetary observations. Tycho tried to produce a model with the best of both Ptolemy ( earth-centered solar system ) and Copernicus ( sun-centered solar system ).
Answer: B ) observation.
Answer: This is the orbit (of the moon around Earth).
An orbit is a circular/oval path that planets, moons, comets, etc follow with a "subject" in the middle. In this case, the circle is the orbit of the moon around Earth.