1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
zmey [24]
3 years ago
12

What is the PE of an object with a mass of 10 kg, and 2 meters up

Physics
2 answers:
Kipish [7]3 years ago
5 0

Answer:200 joules

Explanation:

Potential energy=mass×acceleration due to gravity×height

Potential energy=10×10×2

Potential energy=200 joules

Thepotemich [5.8K]3 years ago
4 0

Answer:

196.2 J

Explanation:

PE = mass x accel. due to gravity x height

= 10 kg x 9.81 m/s² x 2 m

= 196.2 J

You might be interested in
A wave with a frequency of 60 Hz is traveling along a string whose linear mass density is 230 g/m and whose tension is 65 N. If
matrenka [14]

To develop this problem we will use the concepts related to Speed in a string that is governed by Tension (T) and linear density (µ)

V = \sqrt{\frac{T}{\mu}}

Our values are given as:

f = 60Hz\\\mu = 230 g/m = 0.230kg/m\\T = 65N\\P = 75w

Replacing we have that the velocity is

V = \sqrt{\frac{T}{\mu}}

V = \sqrt{\frac{65}{0.230}}

V = 16.81m/s

From the theory of wave propagation the average power wave is given as

P =\frac{1}{2} \mu \omega^2 A^2 V

Where,

A = Amplitude

\omega = 2\pi f \rightarrow Angular velocity

A^2 = \frac{2P}{\mu \omega^2 V}

A^2 = \frac{2P}{\mu (2\pi f)^2 V}

Replacing,

A^2 = \sqrt{\frac{2(75)}{(0.230)(2\pi 60)^2(16.81)}}

A = 0.0165m

Therefore the amplitude of the wave should be 0.0165m

8 0
3 years ago
Light rays bend as they pass from air into water at an angle (not 90 degrees). this is refraction. air water normal incident ray
xxTIMURxx [149]

When light ray pass from air into water, its speed and wavelength change only the frequency of the light doesn't change.

Light travels slower in a medium of higher refractive index. It bends because of this change in speed. The wavelength of light also changes in order to maintain the constant frequency.

7 0
3 years ago
A parallel-plate air capacitor is made from two plates 0.210 m square, spaced 0.815 cm apart. it is connected to a 120 v battery
GuDViN [60]

Answer:

at the beginning: 2.3\cdot 10^{-10} F

when the plates are pulled apart: 1.1\cdot 10^{-10} F

Explanation:

The capacitance of a parallel-plate capacitor is given by

C=k \epsilon_0 \frac{A}{d}

where

k is the relative permittivity of the medium (for air, k=1, so we can omit it)

\epsilon_0 = 8.85\cdot 10^{-12} F/m is the permittivity of free space

A is the area of the plates of the capacitor

d is the separation between the plates

In this problem, we have:

A=0.210 m^2 is the area of the plates

d=0.815 cm=8.15\cdot 10^{-3} m is the separation between the plates at the beginning

Substituting into the formula, we find

C=(1)(8.85\cdot 10^{-12}F/m)\frac{0.210 m^2}{8.15\cdot 10^{-3} m}=2.3\cdot 10^{-10} F

Later, the plates are pulled apart to d=1.63 cm=0.0163 m, so the capacitance becomes

C=(1)(8.85\cdot 10^{-12}F/m)\frac{0.210 m^2}{0.0163 m}=1.1\cdot 10^{-10} F

4 0
3 years ago
Consider a coin which is tossed straight up into the air. After it is released it moves upward, reaches its highest point and fa
avanturin [10]

Answer:

GRAVITATIONAL FORCE

Explanation:

We may have noticed that a body thrown upward in air falls back down again after attaining a particular height. The object was able to fall down back due to the effect of gravity acting on it. If there are no force of gravity acting on the body, the body will not fall back but rather disappears into the thin air.

A coin tossed upward in the air which falls back down when released is therefore under the influence of gravity i.e GRAVITATIONAL FORCE while it moves upward after it is released

3 0
3 years ago
A horizontal spring with stiffness 0.4 N/m has a relaxed length of 11 cm (0.11 m). A mass of 21 grams (0.021 kg) is attached and
riadik2000 [5.3K]

Answer:

0.6983 m/s

Explanation:

k = spring constant of the spring = 0.4 N/m

L₀ = Initial length = 11 cm = 0.11 m

L = Final length = 27 cm = 0.27 m

x = stretch in the spring = L - L₀ = 0.27 - 0.11 = 0.16 m

m = mass of the mass attached = 0.021 kg

v = speed of the mass

Using conservation of energy

Kinetic energy of mass = Spring potential energy

(0.5) m v² = (0.5) k x²

m v² = k x²

(0.021) v² = (0.4) (0.16)²

v = 0.6983 m/s

5 0
4 years ago
Other questions:
  • What are two reasons why the terrestrial planets formed closer to the Sun after the supernova event that initiated the formation
    14·1 answer
  • How many protons are in an element with an atomic number of 8 and a mass number of 182<br> Next
    8·2 answers
  • Which label identifies the statement: "Energy cannot be created or destroyed, but it can be converted or changed into different
    11·1 answer
  • Suppose that water is pouring into a swimming pool in the shape of a right circular cylinder at a constant rate of 5 cubic feet
    15·1 answer
  • As a skateboarder moves downhill, some of the energy of the skateboarder is
    9·2 answers
  • The nutritional calorie (Calorie) is equivalent to 1 kilocalorie. One pound of body fat is equivalent to about 4.10 × 103 Calori
    10·1 answer
  • What is the function of law
    7·1 answer
  • What is intertia? Explain.​
    10·2 answers
  • Will give
    13·2 answers
  • The speed of the water at the tap of lower storey is more than that in the upper storey,why?
    9·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!