We found cesium, strontium, aluminum, sulfur, chlorine, and fluorine on the periodic table. Cesium is the farthest left and the lowest, while fluorine is the farthest right and the highest, so we know they have the highest metallic character and the lowest metallic character, respectively.
Answer:
141g of CCl₄
Explanation:
First, we have to write the balanced equation.
CCl₄(g) + 2 HF(g) ⇄ CF₂Cl₂(g) + 2 HCl(g)
We can calculate how many moles of CF₂Cl₂ using the ideal gas equation.
V = 14.9 dm³ = 14.9 L
T = 21°C + 273.15 = 294.15 K
P = 1.48 atm
R = 0.08206 atm.L/mol.K

We can use proportions to find the mass of CCl₄ required to obtain 0.914 moles of CF₂Cl₂. According to the balanced equation, 1 mol of CF₂Cl₂ is produced when 1 mol of CCl₄ reacts. And the molar mass of CCl₄ is 154 g/mol.

Answer:
36.51%.
Explanation:
First find the percentage of iron in pure Fe2O3 using the atomic masses of the elements:
= (2 * 55.845) * 100 / (2*55.845+ 3*15.999)
= 69.94 %.
So the percentage of iron in the mixture
= 52.2 * 0.6994
= 36.51 (answer).
This problem is providing the initial volume and pressure of nitrogen in a piston-cylinder system and asks for the final pressure it will have when the volume increases. At the end, the answer turns out to be 2.90 atm.
<h3>Boyle's law</h3>
In chemistry, gas laws are used so as to understand the volume-pressure-temperature-moles behavior in ideal gases and relate different pairs of variables.
In this case, we focus on the Boyle's law as an inversely proportional relationship between both pressure and volume at constant both temperature and moles:

Thus, we solve for the final pressure by dividing both sides by V2:

Hence, we plug in both the initial pressure and volume and final volume in order to calculate the final pressure:

Learn more about ideal gases: brainly.com/question/8711877
Answer: 37.0 °C , 42.5 °C
Explanation: