The answer is homogeneous mixture. It is a mixture which has uniform composition and properties all throughout. Mixtures can be separated by physical processes. Mixtures are systems that consist of two or more substances which are mixed but not chemically combined.
At stp the volume is 22.4 L .
hope this helps!
Answer:
4.96E-8 moles of Cu(OH)2
Explanation:
Kps es the constant referring to how much a substance can be dissolved in water. Using Kps, it is possible to know the concentration of weak electrolytes. Then, pKps is the minus logarithm of Kps.
Now, we know that sodium hydroxide (NaOH) is a strong electrolyte, who is completely dissolved in water. Therefore the pH depends only on OH concentration originating from NaOH. Let us to figure out how much is that OH concentration.
![pH= -log[H]\\pH= -log (\frac{kw}{[OH]})](https://tex.z-dn.net/?f=pH%3D%20-log%5BH%5D%5C%5CpH%3D%20-log%20%28%5Cfrac%7Bkw%7D%7B%5BOH%5D%7D%29)
![8.23 = - log(\frac{Kw}{[OH]} \\10^{-8.23} = Kw/[OH]\\ [OH] = Kw/10^{-8.23}](https://tex.z-dn.net/?f=8.23%20%3D%20-%20log%28%5Cfrac%7BKw%7D%7B%5BOH%5D%7D%20%5C%5C10%5E%7B-8.23%7D%20%3D%20Kw%2F%5BOH%5D%5C%5C%20%5BOH%5D%20%3D%20Kw%2F10%5E%7B-8.23%7D)
![[OH]=1.69E-6](https://tex.z-dn.net/?f=%5BOH%5D%3D1.69E-6)
This concentration of OH affects the disociation of Cu(OH)2. Let us see the dissociation reaction:

In the equilibrum, exist a concentration of OH already, that we knew, and it will be added that from dissociation, called "s":
The expression for Kps is:
![Kps= [Cu^{2+}] [OH]^2](https://tex.z-dn.net/?f=Kps%3D%20%5BCu%5E%7B2%2B%7D%5D%20%5BOH%5D%5E2)
The moles of (CuOH)2 soluble are limitated for the concentration of OH present, according to the next equation.

"s" is the soluble quantity of Cu(OH)2.
The solution for this third grade equation is 
Now, let us calculate the moles in 1 L:

I heard that most of the time water found in watersheds aren’t usually clean nor safe for drinking, but i know that there are very few that are somewhat safe for drinking. It’s just not usually common to find clean and healthy watersheds though.