Answer:
it is easier in zig zag because youll fell less tired and feel more energetic and it will will feel as if it were shorter to go zig zag
Answer:
Explanation:
Given: Density of blood = 1.03 × 10³ Kg/m³, Height = 1.93 m g = 9.8 m/s²
pressure at the brain is equal to atmospheric pressure. = Hydro-static
pressure(ρ₀)
∴ pressure of the foot = pressure of the brain(ρ₀) + ( density of blood × acceleration due to gravity × height)(ρgh)
Hydro-static pressure = pressure at the feet- pressure at the brain(ρ₀)
Hydro-static pressure (Δp) = (ρgh + ρ₀) - ρ₀ = ρgh
Hydro-static pressure = 1.03 × 10³ × 9.8 × 1.93 = 1.948 × 10⁴ Pa
∴ Hydro-static pressure ≈ 1.95 × 10⁴ Pa
A wave with a large amplitude
a wave check
By Snell's law:
η = sini / sinr. i = 25, η = 1.33
1.33 = sin25° / sinr
sinr = sin25° / 1.33 = 0.4226/1.33 = 0.3177 Use a calculator.
r = sin⁻¹(0.3177)
r ≈ 18.52°
Option A.
God's grace.
Answer:
Hi myself Shrushtee.
Explanation:
Artificial gravity is a must for any space station if humans are to live there for any extended length of time. Without artificial gravity, human growth is stunted and biological functions break down. An effective way to create artificial gravity is through the use of a rotating enclosed cylinder, as shown in the figure. Humans walk on the inside edge of the cylinder, which is sufficiently large (diameter of 2235 meters) that its curvature is not readably noticeable to the inhabitants. (The space station in the figure is not drawn to the scale of the human.) Once the space station is rotating at the necessary speed, how many minutes would it take the space station to make one revolution?
The distance traveled by the man in one revolution is simply the circumference of the space station, C = 2p R. From this result, you should be able to deduce the time it takes for the space station to sweep out a complete revolution.
<h2>
<em><u>P</u></em><em><u>lease</u></em><em><u> mark</u></em><em><u> me</u></em><em><u> as</u></em><em><u> brainleist</u></em></h2>