Answer:
The angular acceleration α = 14.7 rad/s²
Explanation:
The torque on the rod τ = Iα where I = moment of inertia of rod = mL²/12 where m =mass of rod and L = length of rod = 4.00 m. α = angular acceleration of rod
Also, τ = Wr where W = weight of rod = mg and r = center of mass of rod = L/2.
So Iα = Wr
Substituting the value of the variables, we have
mL²α/12 = mgL/2
Simplifying by dividing through by mL, we have
mL²α/12mL = mgL/2mL
Lα/12 = g/2
multiplying both sides by 12, we have
Lα/12 × 12 = g/2 × 12
αL = 6g
α = 6g/L
α = 6 × 9.8 m/s² ÷ 4.00 m
α = 58.8 m/s² ÷ 4.00 m
α = 14.7 rad/s²
So, the angular acceleration α = 14.7 rad/s²
Answer:
t = 2.58*10^-6 s
Explanation:
For a nonconducting sphere you have that the value of the electric field, depends of the region:

k: Coulomb's constant = 8.98*10^9 Nm^2/C^2
R: radius of the sphere = 10.0/2 = 5.0cm=0.005m
In this case you can assume that the proton is in the region for r > R. Furthermore you use the secon Newton law in order to find the acceleration of the proton produced by the force:

Due to the proton is just outside the surface you can use r=R and calculate the acceleration. Also, you take into account the charge density of the sphere in order to compute the total charge:

with this values of a you can use the following formula:

hence, the time that the proton takes to reach a speed of 2550km is 2.58*10^-6 s
The acceleration of a 600,000 kg freight train, if each of its three engines can provide 100,000N of force is 0.167m/s².
<h3>How to calculate acceleration?</h3>
The acceleration of a freight train can be calculated using the following formula:
Force = mass × acceleration
According to this question, a 600,000kg freight train can produce 100,000N of force. The acceleration is as follows:
100,000 = 600,000 × a
100,000 = 600,000a
a = 0.167m/s²
Therefore, the acceleration of a 600,000 kg freight train, if each of its three engines can provide 100,000N of force is 0.167m/s².
Learn more about acceleration at: brainly.com/question/12550364
#SPJ1
Answer:
Explanation:
a ) Thermal efficiency = work output / heat input
= .38 MW / 1 MW = .38
OR 38%
Heat rejected at cold reservoir = heat input - work output
1 MW - .38 MW
= 0.62 MW.
b ) For reversible power output
efficiency = T₂ - T₁ / T₂ ; T₂ is temperature of hot reservoir and T₁ is temperature of cold reservoir.
= 1200 - 300 / 1200 = 900 / 1200
= .75
or 75%
rate at which heat is rejected
= 1 - .75 x 1
= .25 MW .