Answer: a) 139.4 μV; b) 129.6 μV
Explanation: In order to solve this problem we have to use the Ohm law given by:
V=R*I whre R= ρ *L/A where ρ;L and A are the resistivity, length and cross section of teh wire.
Then we have:
for cooper R=1.71 *10^-8* 1.8/(0.001628)^2= 11.61 * 10^-3Ω
and for silver R= 1.58 *10^-8* 1.8/(0.001628)^2=10.80 * 10^-3Ω
Finalle we calculate the potential difference (V) for both wires:
Vcooper=11.62* 10^-3* 12 * 10^-3=139.410^-6 V
V silver= 10.80 10^-3* 12 * 10^-3=129.6 10^-6 V
Answer:
The angular speed of the system increases.
The moment of inertia of the system decreases.
Explanation:
As we know that the girl is going towards the center of the circle so here the moment of inertia of the girl is given as

here we know that
r = position of the girl from the center of the disc
now we know that the girl is moving towards the center so its distance will continuously decreasing
So the moment of inertia of the girl will decrease
Now we know that that with respect to the center of the disc there is no torque on the disc + girl system
So here we can use angular momentum conservation
So we have

since moment of inertia is decreasing for the system
so angular speed will increase
The modifications to the car design that would have the greatest effect on increasing the kinetic energy of the car is to increase the mass of the car slightly (option B).
<h3>What is kinetic energy?</h3>
Kinetic energy is the energy possessed by an object because of its motion. The kinetic energy equal (nonrelativistically) to one half the mass of the body times the square of its speed.
According to this question, an engineer is designing a small toy car that will be launched from rest. The engineer wants to maximize the kinetic energy of the car when it is launched by a compressed spring.
However, he can only make one adjustment to the initial conditions of the car. Considering the fact that the mass of an object is directly proportional to the kinetic energy.
This suggests that the modifications to the car design that would have the greatest effect on increasing the kinetic energy of the car is to increase the mass of the car slightly.
Learn more about kinetic energy at: brainly.com/question/12669551
#SPJ1
Answer:
a) b) d)
Explanation:
The question is incomplete. The Complete question might be
In an inertial frame of reference, a series of experiments is conducted. In each experiment, two or three forces are applied to an object. The magnitudes of these forces are given. No other forces are acting on the object. In which cases may the object possibly remain at rest? The forces applied are as follows: Check all that apply.
a)2 N; 2 N
b) 200 N; 200 N
c) 200 N; 201 N
d) 2 N; 2 N; 4 N
e) 2 N; 2 N; 2 N
f) 2 N; 2 N; 3 N
g) 2 N; 2 N; 5 N
h ) 200 N; 200 N; 5 N
For th object to remain at rest, sum of all forces must be equal to zero. Use minus sign to show opposing forces
a) 2+(-2)=0 here minus sign is to show the opposing firection of force
b) 200+(-200)=0
c) 200+(-201)
0
d) 2+2+(-4)=0
e) 2+2+(-2)
0
f) 2+2+(-3)
0; 2+(-2)+3
0
g) 2+2+(-5)
0; 2+(-2)+5
0
h)200 + 200 +(-5)
0; 200+(-200)+5
0
Answer:
the power that can be generated by the river is 117.6 MW
Explanation:
Given that;
Volume flow rate of river v = 240 m³/s
Height above the lake surface a h = 50 m
Amount of power can be generated from this river water after the dam is filled = ?
Now the collected water in the dam contains potential energy which is used for the power generation,
hence, total mechanical energy is due to potential energy alone.
= m(gh)
first we determine the mass flow rate of the fluid m
m = p×v
where p is density ( 1000 kg/m³
so we substitute
m = 1000kg/m³ × 240 m³/s
m = 240000 kg/s
so we plug in our values into (
= m(gh) kJ/kg )
= 240000 × 9.8 × 50
= 117600000 W
= 117.6 MW
Therefore, the power that can be generated by the river is 117.6 MW