1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
miss Akunina [59]
3 years ago
10

The Gulf Stream off the east coast of the United States can flow at a rapid 3.9 m/s to the north. A ship in this current has a c

ruising speed of 11 m/s . The captain would like to reach land at a point due west from the current position.
Physics
2 answers:
alina1380 [7]3 years ago
5 0

Answer:

angle = 69.23 degrees west of south

Explanation:

The ship should go to the south at an equal rate as the water flows north so the velocities balance and the ship just move west.

As far as the water is concerned, the ship goes 3.9 m / s to the south, but much remains to the west. To find out that the triangle is drawing. 3.9 m/s point down side  and the hypotenuse is 11cos(angle) = \frac{adjacent}{hypotaneous}.

angle = cos^{-1}(\frac{adjacent}{hypotaneous})

angle = cos^{-1}(\frac{3.9}{11})

angle = 69.23 degrees west of south

Alex Ar [27]3 years ago
3 0

Answer:

72.54 degree west of south

Explanation:

flow = 3.9 m/s north

speed = 11 m/s

to find out

point due west from the current position

solution

we know here water is flowing north and ship must go south at an equal rate so that the velocities cancel and the ship just goes west

so it become like triangle with 3.3 point down and the hypotenuse is 11

so by triangle

hypotenuse ×cos(angle) = adjacent side

11 ×cos(angle) = 3.3

cos(angle) = 0.3

angle = 72.54 degree west of south

You might be interested in
If a conducting loop of radius 10 cm is onboard an instrument on Jupiter at 45 degree latitude, and is rotating with a frequency
Pepsi [2]

Answer:

a)  fem = - 2.1514 10⁻⁴ V,  b) I = - 64.0 10⁻³ A, c)    P = 1.38  10⁻⁶ W

Explanation:

This exercise is about Faraday's law

         fem = - \frac{ d \Phi_B}{dt}

where the magnetic flux is

        Ф = B x A

the bold are vectors

        A = π r²

we assume that the angle between the magnetic field and the normal to the area is zero

         fem = - B π 2r dr/dt = - 2π B r v

linear and angular velocity are related

        v = w r

        w = 2π f

        v = 2π f r

we substitute

        fem = - 2π B r (2π f r)

        fem = -4π² B f r²

For the magnetic field of Jupiter we use the equatorial field B = 428 10⁻⁶T

we reduce the magnitudes to the SI system

       f = 2 rev / s (2π rad / 1 rev) = 4π Hz

we calculate

       fem = - 4π² 428 10⁻⁶ 4π 0.10²

       fem = - 16π³ 428 10⁻⁶ 0.010

       fem = - 2.1514 10⁻⁴ V

for the current let's use Ohm's law

        V = I R

        I = V / R

         I = -2.1514 10⁻⁴ / 0.00336

         I = - 64.0 10⁻³ A

Electric power is

        P = V I

        P = 2.1514 10⁻⁴ 64.0 10⁻³

        P = 1.38  10⁻⁶ W

6 0
2 years ago
Two pipes move the same amount of ideal fluid in the same amount of time. One pipe has a 2 in. diameter; the other has a 3 in. d
KATRIN_1 [288]

Answer:

a) 3-in. pipe

Explanation:

Given that

Fluid flow is in same amount in the same time it means that volume flow rate is same for the pipes

Volume flow rate

Q = A V

A=Area ,V=Velocity

A=\dfrac{\pi}{4}d^2

If diameter d is more then the velocity will be less for same volume flow rate .We also Know that if pressure is more then the velocity will be less.

The second pipe 3 in diameter having more diameter then the velocity will be less but the pressure will be more.

That is why the 3 in diameter is having more pressure than 2 in diameter pipe.

Therefore the answer will be a.

a) 3-in diameter  pipe

6 0
3 years ago
Helpp pls
Kipish [7]

Answer:

The intensity of the electric field is

|E|=10654.37 \:N/C

Explanation:

The electric field equation is given by:

|E|=k\frac{q}{d^{2}}

Where:

  • k is the Coulomb constant
  • q is the charge at 0.4100 m from the balloon
  • d is the distance from the charge to the balloon

As we need to find the electric field at the location of the balloon, we just need the charge equal to 1.99*10⁻⁷ C.

Then, let's use the equation written above.

|E|=(9*10^{9})\frac{1.99*10^{-7}}{0.41^{2}}

|E|=10654.37 \:N/C

I hope it helps you!

5 0
3 years ago
What is the net force on a 50-newton weight hanging on a string tied to the ceiling?
Lady bird [3.3K]
The net force on the hanging object is zero. If it were not zero, then the object would be accelerating in some direction.
4 0
3 years ago
1| Page
andreev551 [17]

Answer:

Polarization occurs when an electric field distorts the negative cloud of electrons around positive atomic nuclei in a direction opposite the field. Polarization P in its quantitative meaning is the amount of dipole moment p per unit volume V of a polarized material, P = p/V.

Explanation:

8 0
2 years ago
Read 2 more answers
Other questions:
  • A 0.0780 kg lemming runs off a 5.36 m high cliff at 4.84 m/s. what is its potential energy (PE) when it is 2.00 m above the grou
    6·1 answer
  • Your car burns gasoline as you drive up a mountain road. What energy transformation is taking place?
    10·2 answers
  • A piece of fruit is hanging from a tree what energy is being used
    9·1 answer
  • What is the information gathered in an investigation is called
    10·1 answer
  • Which are ways to build self esteem?
    10·1 answer
  • If the intensity level by 15 identical engines in a garage is 100 dB, what is the intensity level generated by each one of these
    8·1 answer
  • A ball is thrown with a velocity of 35 meters per second at an angle of 30° above the horizontal. which quantity has a magnitude
    7·1 answer
  • Help on #2 will give brainliest and 40 points
    15·1 answer
  • A race car goes forward from 0 to a velocity of 80 m/s in 9.4 s. What is its acceleration?
    14·1 answer
  • - A straight wire, 0.20 m long, moves at a constant speed of 7.0 m/s
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!