Answer:
correct option is (A) 0.5
Explanation:
given data
axial column load = 250 kN per meter
footing placed = 0.5 m
cohesion = 25 kPa
internal friction angle = 5°
solution
we know angle of internal friction is 5° that is near to 0°
so it means the soil is almost cohesive soil.
and for a pure cohesive soil
= 0
and we know formula for
is
= (Nq - 1 ) × tan(Ф) ..................1
so here Ф is very less
should be nearest to zero
and its value can be 0.5
so correct option is (A) 0.5
Answer:
#include <iostream>
#include <iomanip>
using namespace std;
class pointType
{
public:
pointType()
{
x=0;
y=0;
}
pointType::pointType(double x,double y)
{
this->x = x;
this->y = y;
}
void pointType::setPoint(double x,double y)
{
this->x=x;
this->y=y;
}
void pointType::print()
{
cout<<"("<<x<<","<<y<<")\n";
}
double pointType::getX()
{return x;
}
double pointType::getY()
{return y;
}
private:
double x,y;
};
int main()
{
pointType p2;
double x,y;
cout<<"Enter an x Coordinate for point ";
cin>>x;
cout<<"Enter an y Coordinate for point ";
cin>>y;
p2.setPoint(x,y);
p2.print();
system("pause");
return 0;
}
Answer:
Conductor
Explanation:
Current is carried by a conductor.
__
The purpose of a dielectric and/or insulator is to prevent current flow. An electrostatic field may set up the conditions for current flow, but it carries no current itself.
Answer: The answer is d.
Explanation:
The ship is acted by two forces, gravity (going always downward), and an upward force due to Archimedes' principle, that says that "any body submerged in a liquid, receives an upward force, which value is equal to the weight of the volume of the liquid that it displaces".
In order to be able to evaluate this force, we would need to know what percentage of the volume of the ship is submerged, and this depends on the density of the ship.
As we have no information regarding the material from which the ship is built, and because we only know that the ship "floats" (which means that is not 100% submerged in the ocean), we have not enough information to determine the volume of water displaced.
Answer:
Springs store energy when compressed and release energy when they rebound
Explanation: