Answer:
The option that is best described as a way engineers can test and investigate how things should be under certain circumstances is;
Explanation:
Modeling is a tool an engineer can use for the physical representation of a system that will facilitate the definition, testing and analysis, communication, data generation, data verification and data validation of given concepts
Models also aid in setting specifications, supporting designs, and verification of a given system
Therefore, with modeling engineers can investigate the behavior of systems under given environmental conditions.
Answer:
Enthalpy at outlet=284.44 KJ
Explanation:


We need to Find enthalpy of outlet.
Lets take the outlet mass m and outlet enthalpy h.
So from mass conservation

m=1+1.5+2 Kg/s
m=4.5 Kg/s
Now from energy conservation

By putting the values

So h=284.44 KJ
A vector is a phenomenon which in mostly used in mathematics and physics and is related to direction and size.
<u>Explanation:</u>
In mathematics and physics, a vector is a component of a vector space. For some, particular vector spaces, the vectors have gotten explicit names, which are recorded beneath. Verifiably, vectors were presented in geometry and material science before the formalization of the idea of vector space.
A vector is an amount or phenomenon that has two autonomous properties: magnitude and direction. The term likewise means the numerical or geometrical portrayal of such an amount.
Answer:
The differential equation and the boundary conditions are;
A) -kdT(r1)/dr = h[T∞ - T(r1)]
B) -kdT(r2)/dr = q'_s = 734.56 W/m²
Explanation:
We are given;
T∞ = 70°C.
Inner radii pipe; r1 = 6cm = 0.06 m
Outer radii of pipe;r2 = 6.5cm=0.065 m
Electrical heat power; Q'_s = 300 W
Since power is 300 W per metre length, then; L = 1 m
Now, to the heat flux at the surface of the wire is given by the formula;
q'_s = Q'_s/A
Where A is area = 2πrL
We'll use r2 = 0.065 m
A = 2π(0.065) × 1 = 0.13π
Thus;
q'_s = 300/0.13π
q'_s = 734.56 W/m²
The differential equation and the boundary conditions are;
A) -kdT(r1)/dr = h[T∞ - T(r1)]
B) -kdT(r2)/dr = q'_s = 734.56 W/m²
It’s A 75khz because it’s plus or minus so if u add it would be too much