Answer:
Explanation:
Step by step solved solution is given in the attached document.
Answer:
The answer to this question is 1273885.3 ∅
Explanation:
<em>The first step is to determine the required hydraulic flow rate liquid if working pressure and if a cylinder with a piston diameter of 100 mm is available.</em>
<em>Given that,</em>
<em>The distance = 50mm</em>
<em>The time t =10 seconds</em>
<em>The force F = 10kN</em>
<em>The piston diameter is = 100mm</em>
<em>The pressure = F/A</em>
<em> 10 * 10^3/Δ/Δ </em>
<em> P = 1273885.3503 pa</em>
<em>Then</em>
<em>Power = work/time = Force * distance /time</em>
<em> = 10 * 1000 * 0.050/10</em>
<em>which is =50 watt</em>
<em>Power =∅ΔP</em>
<em>50 = 1273885.3 ∅</em>
Answer:
(b)False
Explanation:
Given:
Prandtl number(Pr) =1000.
We know that 
Where
is the molecular diffusivity of momentum
is the molecular diffusivity of heat.
Prandtl number(Pr) can also be defined as

Where
is the hydrodynamic boundary layer thickness and
is the thermal boundary layer thickness.
So if Pr>1 then hydrodynamic boundary layer thickness will be greater than thermal boundary layer thickness.
In given question Pr>1 so hydrodynamic boundary layer thickness will be greater than thermal boundary layer thickness.
So hydrodynamic layer will be thicker than the thermal boundary layer.