<h3><u>Answer;</u></h3>
Polar: IF, PCl3, IF5
Nonpolar: CS2, SO3, SF6
<h3><u>Explanation:</u></h3>
- Polar molecules form when two atoms do not share electrons equally in a covalent bond.
- A molecule is classified as a polar molecule when the arrangement of the atoms is such that one end of the molecule has a positive electrical charge and the other end has a negative charge.
- A non-polar molecule does not have electrical poles.The electrons are distributed more equally.
- Therefore, a non-polar molecule does not have a profusion of charges at the opposite ends. The majority of hydrocarbon liquids are non-polar molecules.
This separation technique is a 4-step procedure. First, add H₂SO₄ to the solution. Because of common ion effect, BaSO₄ will not react, only Mg(OH)₂.
Mg(OH)₂ + H₂SO₄ → MgSO₄ + 2 H₂O
The aqueous solution will now contain MgSO₄ and BaSO₄. Unlike BaSO₄, MgSO₄ is soluble in water. So, you filter out the solution. You can set aside the BaSO₄ on the filter paper. To retrieve Mg(OH)₂, add NaOH.
MgSO₄ + 2 NaOH = Mg(OH)₂ + Na₂SO₄
Na₂SO₄ is soluble in water, while Mg(OH)₂ is not. Filter this solution again. The Mg(OH)₂ is retrieved in solid form on the filter paper.
A heat because heat is the transfer of energy.
Answer:
397 L
Explanation:
Recall the ideal gas law:

If temperature and pressure stays constant, we can rearrange all constant variables onto one side of the equation:

The left-hand side is simply some constant. Hence, we can write that:

Substitute in known values:

Solving for <em>V</em>₂ yields:

In conclusion, 13.15 moles of argon will occupy 397* L under the same temperature and pressure.
(Assuming 100 L has three significant figures.)
Answer:
The mass of the reactants equals the mass of the products.