You input potential (stored<span>) </span>energy<span> into the </span>rubber band<span> system when you </span>stretched<span> the</span>rubber band<span> back. Because it is an </span>elastic<span> system, this kind of potential </span>energy<span> is specifically </span>called elastic<span> potential </span>energy<span>. ... When the </span>rubber band<span> is released, the potential </span>energy<span> is quickly converted to kinetic (motion) </span>energy<span>.</span>
It depends on if you want the volume of the gas itself which is impossible to calculate because it changes based on the container it is in, but if you want to find the volume of the gas in relation to the container it is in then it is possible and fairly easy to do, can you calculate the volume of a gas technically yes you can but it will always be different if you change the container it is in
Answer:
The correct answer is - 14.
Explanation:
In the given molecular formula of the aluminum sulphite which is Al2(SO3)3, this molecular formula there different type of elements are bonded together to form this compound each element has a specific number of atoms present. This compound has three elements that are aluminum, sulfur, and oxygen and the atoms are present are:
Al = 2 atoms represented by subscript
S = 3 atoms represented as whole subscripts of sulfite
O = 9 atoms 3 inside bracket and 3 outside of bracket that multiplies.
Thus, total number of atoms are 2+3+9 = 14
Not most elements have DNA, only five "elements" have DNA. <span>The five "elements" are Carbon, Oxygen, Hydrogen, Nitrogen and Phosphorus. Good luck with your question I hope this is what you were looking for.</span>
Answer: The mass of the sample will be 1417.7 grams.
Explanation:
We are given:

This means that 1 mole of NaCl has an enthalpy of fusion of 30.2 kJ
1 mole of NaCl has a mass of 58.44 grams.
So, 30.2 kJ of heat is require for a mass 58.44 grams of NaCl
So, 732.6 kJ of heat will be required for =
= 1417.65 grams of NaCl.
Hence, the mass of NaCl sample will be 1417.7 grams.