Wind turbines work on a simple principle: instead of using electricity to make wind—like a fan—wind turbines use wind to make electricity. Wind turns the propeller-like blades of a turbine around a rotor, which spins a generator, which creates electricity.
Answer:
a) A = 3 cm, b) T = 0.4 s, f = 2.5 Hz,
2) A standing wave the displacement of the wave is canceled and only one oscillation remains
Explanation:
a) in an oscillatory movement the amplitude is the highest value of the signal in this case
A = 3 cm
b) the period of oscillation is the time it takes for the wave to repeat itself in this case
T = 0.4 s
the period is the inverse of the frequency
f = 1 /T
f = 1 /, 0.4
f = 2.5 Hz
2) a traveling wave is a wave for which as time increases the displacement increases, in the case of a transverse wave the oscillation is perpendicular to the displacement and in the case of a longitudinal wave the oscillation is in the same direction of the displacement.
A standing wave occurs when a traveling wave bounces off some object and there are two waves, one that travels in one direction and the other that travels in the opposite direction. In this case, the displacement of the wave is canceled and only one oscillation remains.
This seems like a calculus problem. I'm assuming you would use cos and sin. so here's the vertical component +10.0m/s multiplied by sin60 = 8.66 rounded to the hundreths place. Now for horizontal, that would be +10.0m/s multiplied by cos60 = 5. hope this helped.
here's the solution,
The <em>radius</em> of the circle =<u> 3 km</u>
distance covered = <em>circumference</em> of the circle,
So, Circumference :
=》
=》
=》
(a). Distance covered by moving object is 18.84 km
(b). 0 km
now, Displacement of the object is 0 km, because displacement is the shortest distance from stating point to the destination, but the object returns back to the starting point, hence magnitude of displacement is 0.