Answer:
Energy = 18.3 Kilowatt-hour
Explanation:
Given the following data;
Power = 1220 Watts
Time = 30 * 30 = 900 minutes to hours = 900/60 = 15 hours
To find the energy consumption;
Power can be defined as the energy required to do work per unit time.
Mathematically, it is given by the formula;
Making energy the subject of formula, we have;
Energy = power * time
Energy = 1220 * 15
Energy = 18300 Joules
To convert energy to Kilowatt-hour;
Energy = 18300/1000
Energy = 18.3 Kilowatt-hour
Answer:
k_2 = 7.815 * 10^-3 s^-1
Explanation:
Given:
- rate constant of reaction k_1 = 7.8 * 10^-3 s^-1 @ T_1 = 25 C
- rate constant of reaction k_2 = ? @ T_2 = 75 C
- The activation energy E_a = 33.6 KJ/mol
- Gas constant R = 8.314472 KJ / mol . K
Find:
- rate of reaction k_2 @ T_2 = 75 C
Solution:
- we will use a combined form of Arrhenius equations that relates rate constants k as function of E_a and temperatures as follows:
k_2 = k_1 * e ^ [(E_a / R) * ( 1 / T_1 - 1 / T_2 )
- Evaluate k_2 = 7.8 * 10^-3* e^[(33.6 / 8.314472)*(1/298 -1/348)
- Hence, k_2 = 7.815 * 10^-3 s^-1
An electric toaster takes in electrical energy from the power outlet and converts it into heat<span>, very efficiently. If you want your toast to cook quickly, you need a toaster that radiates as much </span>heat<span> as possible each second onto your bread.</span>
Answer:
719
Explanation:
Conversion
1 picometer (pm) is equivalent to
meter
1 micrometer is equivalent to
meter
To find the number of layers, we divide the overal leaf thickness by the thickness of one atom hence dividing tex]0.125 × 10^{-6}[/tex] meter by
meter we get that the number of sheets will be as follows

Therefore, they are approximately 719 sheets
Orient the semi-circle arc such that it is symmetric with respect to the y-axis. Now, by symmetry, the electric field in the x-direction cancels to zero. So the only thing of interest is the electric field in the y-direction.
dEy=kp/r^2*sin(a) where k is coulombs constant p is the charge density r is the radius of the arc and a is the angular position of each point on the arc (ranging from 0 to pi. Integrating this renders 2kq/(pi*r^3). Where k is 9*10^9, q is 9.8 uC r is .093 m
I answeared your question can you answear my question pleas